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Abstract
Modern Network Operations Centers (NOCs) face significant challenges in
managing the large volume of alerts generated by diverse monitoring systems.

Manual triage processes, delayed escalation, and the absence of contextual
intelligence often lead to prolonged incident resolution times and service
degradation. This research proposes an Al-powered NOC Alert Triage and
Escalation System that integrates microservice architecture, automated escalation
mechanisms, and Large Language Model (LLM)-based analysis to improve alert
handling efficiency. The proposed system leverages a FastAPl-based webhook
service for real-time alert ingestion, PostgreSQL for persistent storage, RabbitMQ
for asynchronous communication, and an Ollama-based LLM service for incident
summarization and contextual knowledge enrichment.

Automated escalation is managed through a persistent scheduling mechanism to
ensure reliability, even during system restarts. The Experimental evaluation
demonstrates a reduction in the Mean Time to Acknowledge (MTTA), improved
alert reduplication accuracy, and enhanced incident understanding through Al-
generated summaries. The system is scalable, fault-tolerant, and customizable,
making it suitable for enterprise-level NOC environments.

Network Operations Centers (NOCs) form the
backbone of modern digital infrastructure,
particularly within enterprise IT environments, cloud
service providers, and large-scale telecommunications
organizations. With the exponential growth of
networked devices, applications, and distributed
services, both the volume and complexity of
operational significantly.
Monitoring systems continuously generate alerts
related to configuration issues, hardware failures,
security incidents, and performance degradation.
Although these alerts are essential for maintaining

alerts have increased

volume

environments primarily rely on manual classification
processes static threshold-based alerting, and human
driven protocols.  However, these
approaches are increasingly inadequate to manage the
complexity of contemporary network ecosystems.
Alert fatigue has become a widespread issue, where
excessive non-critical notifications reduce operators’
ability to focus on high-priority incidents. Research
indicates that alert fatigue contributes to increased
Mean Time to Acknowledge (MTTA) and Mean Time
to Resolve (MTTR), directly affecting service-level
agreements (SLAs) and customer satisfaction. The

escalation

motivation for this research stems from the need to

service reliability, their sheer often
overwhelms human operators Traditional NOC modernize NOC alert management through
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intelligent automation, scalable system architecture,
and contextual decision support. Recent advances in
artificial intelligence, particularly Large Language
Models (LLMs), offer new opportunities to enhance
incident  understanding  through  automated
reasoning, summarization, and knowledge retrieval.
Despite these advances, the practical integration of
such technologies into realworld NOC workflows
remains limited.

2.2 Problem Statement

Despite the availability of advanced monitoring
platforms, most NOCs continue to face three primary
challenges: (1) inefficient alert triage, (2) delayed or
inconsistent escalation, and (3) lack of actionable

Server

Monitoring

NOC

context during incident response. Alerts frequently
arrive as isolated events without sufficient diagnostic
details, requiring operators to manually execute
troubleshooting command, consult documentation,
and correlate historical incidents. This manual
process is time consuming, error prone, and highly
dependent on individual expertise.

Additionally, many existing alert management systems
are monolithic and tightly coupled, limiting scalability
and  hindering  integration  with  Al-driven
components. Escalation mechanisms are often
implemented using in-memory schedulers or manual
workflows, which are

Website
monitoring

Figure 1: Core monitoring domains handled by a Network Operations Center (NOC), including network,
server, cloud, and website monitoring

unreliable during system restarts or unexpected
failures. These constraints emphasize the need for a
resilient, intelligent, and extensible alert management
framework.

2.3 Research Objectives

The primary objective of this research is to design and
evaluate an Al-powered NOC alert triage and
escalation system that overcomes the limitations of
conventional approaches. The specific objectives are
as follows.

1. Design a microservice-based architecture that
enables scalable, modular, and fault-

tolerant alert processing.

2. Implement automated alert triage, reduplication,
and time-based escalation mechanisms.

3. Integrate LLM-based incident summarization and
contextual knowledge enrichment into the alert life-
cycle.

4. Evaluate the impact of automation and Al
integration on  operational efficiency  using
quantitative performance metrics.

2.4 Research Questions

This study is guided by the following research
questions:

e How does a microservice-based architecture
improve the scalability and reliability of NOC alert
management systems’

¢ To what extent does automated escalation reduce
response times compared to manual procedures?

¢ How effectively do LLM-generated summaries
enhance situational awareness and decision making
for NOC operators
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2.5 Structure of the Paper

The remainder of this paper is organized as follows.
Section [2] reviews related work on alert management,
escalation strategies, and Al-driven incident analysis.
Section [3] describes the architecture of the system
and the research methodology. Section [4] outlines
the implementation details and experimental setup.
Section [5] presents the results and performance
evaluation. Section [6] discusses the key findings and
practical implications. Section [7] highlights
limitations and future research directions. Finally,
Section [8] concludes the paper.

3 Literature Review

Early Network Operations Center (NOC) systems
were primarily built around Simple Network
Management Protocol (SNMP) traps, syslog messages,
and static threshold-based alarms. These systems
focused on detecting deviations from predefined
performance metrics, such as CPU utilization,
memory consumption, or packet loss. Although
effective for small scale and relatively stable networks,
they lacked the adaptability required for modern,
dynamic, and heterogeneous environments.

To address alert overload, alert correlation engines
were introduced to group related alarms and suppress
duplicates. However, most correlation mechanisms
relied on manually defined rules that required
continuous maintenance and domain expertise. As
network infrastructures evolved in scale and
complexity, rule-based systems struggled to adapt to
new device types, distributed architectures, and
emerging failure patterns. Alert fatigue has been
extensively studied in both the healthcare and IT
operations domains. Research indicates that high
volumes of false positives significantly reduce operator
response and increase cognitive load. In large-scale
NOC environments, operators may receive hundreds
of alerts per hour, many of which are redundant or
non-actionable. This overload often

results in delayed responses to critical incidents and
an increased likelihood of human error Several
mitigation strategies, including alert prioritization and
severity reclassification, have been proposed.
However, these approaches frequently depend on
static severity definitions that do not adequately

reflect  the  realtime  operational  context.

Consequently, even high severity alerts may lack
sufficient diagnostic detail to enable rapid resolution.
Machine learning (ML) techniques have been applied
to anomaly detection, root cause analysis, and alert
correlation. Supervised and unsupervised models
have demonstrated effectiveness in identifying
abnormal patterns and reducing false positives.
Clustering algorithms and graph-based approaches are
commonly used to correlate alerts across
interconnected network components. Despite these
advances, many ML based solutions primarily focus
on detection rather than response management. They
often function as standalone modules that generate
additional alerts or risk scores, inadvertently
increasing the complexity of the system. Integration
with escalation workflows and operator-facing
decision-support interfaces remains limited. Large
Language Models (LLMs) have recently demonstrated
strong capabilities in natural language understanding,
reasoning, and summarization. Emerging research
explores their application in log analysis, incident
summarization, and conversational IT support
systems. LLMs can synthesize information from alerts,
logs, and documentation to generate human readable
explanations that improve situational awareness.
However, challenges related to latency, reliability, and
explainability must be addressed before deploying
LLMs in realtime operational systems. Retrieval-
Augmented Generation (RAG) has been proposed as
a method to ground LLM outputs in verified
knowledge bases, thereby improving factual
consistency and reducing hallucinations.

While prior research addresses isolated components
of alert management such as detection, correlation, or
summarization there is a gap in comprehensive
systems that integrate automated escalation, Al-driven
contextual analysis, and resilient architectural design
within a unified framework.

This research addresses this gap by proposing an end-
to-end NOC alert triage and escalation system that
combines microservices, asynchronous event driven
processing, persistent scheduling, and LLM based
intelligence. The proposed approach emphasizes
scalability, reliability, and contextual awareness,
which are critical requirements for modern enterprise
level NOC environments
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4 Methodology

4.1 Research Design

This research adopts a system-oriented quantitative
design focused on the development, implementation
and evaluation of an Alpowered alert triage and
escalation framework for Network Operations
Centers (NOCs). Instead of proposing a purely
conceptual model, this study presents a fully
functional prototype deployed in a controlled
experimental environment.

The system performance is evaluated using
quantitative operational metrics, including Mean
Time to Acknowledge (MTTA), escalation accuracy,
alert reduplication rate, and notification reliability.
The methodology is structured into four primary
phases:

1. System requirement analysis

2. Architectural design

3. Implementation of alert processing, escalation
mechanisms, and Al-driven analysis

4. Experimental evaluation

This phased structure ensures traceability between
research objectives, architectural components, and
evaluation outcomes.

4.2 System Architecture Overview

The proposed solution follows a microservice-based
architecture to ensure modularity, scalability, and
fault tolerance. The core components include:

¢ A FastAPlbased alert ingestion service for
normalization, persistence, and orchestration.

¢ An asynchronous Al processing service for LLM-
based summarization and embedding

generation.

e RabbitMQ for
communication.

e PostgreSQL for persistent storage of alerts and
escalation schedules.

¢ A multi-channel notification layer supporting email

and WhatsApp alerts.

non-blocking  inter-service

NOC Alert Triage & Escalation System
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Figure 2: Overall architecture of the Al-powered NOC alert triage and escalation system

This architectural separation guarantees that time-
critical ingestion and escalation processes are never
blocked by computationally intensive Al operations.
Alerts are ingested through a RESTful webhook
endpoint implemented using FastAPI.

Incoming alerts conform to a predefined schema and
are normalized to ensure consistency across
heterogeneous monitoring sources. The
normalization process standardizes severity levels,

timestamps, device identifiers, and team ownership
metadata. Alerts are classified into actionable and
non-actionable categories using predefined critical
alert patterns. Non-critical alerts are stored for
auditing purposes but marked as invalid to prevent
unnecessary operator intervention. This early filtering
mechanism  significantly reduces alert noise.
Additionally, alerts are written to structured text files
during ingestion, creating an immutable snapshot of
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the payload for forensic analysis, offline review, and
regulatory compliance.

Once persisted, alerts are forwarded to an orchestrator
module responsible for managing

the alert lifecycle. Duplicate detection is performed
using external alert identifiers. If a duplicate is
detected, it is marked accordingly and excluded from
further processing. Valid alerts are immediately
transitioned to the IN-PROGRESS state and assigned
an initial escalation level based on team-specific
configurations, ensuring early ownership and
accountability.

A key contribution of this research is the
implementation of a persistent, time-based

escalation mechanism using APScheduler with a
database-backed job store. Escalation policies are
defined in an external JSON-based escalation matrix,
allowing administrators to configure time thresholds
and notification recipients per team and escalation
level. When an alert enters the IN-PROGRESS state,
escalation jobs are dynamically scheduled. If the alert
remains unresolved within the configured time
threshold, it is automatically escalated (e.g., from
Level 1 to Level 2), and notifications are triggered
accordingly. Since the scheduler uses persistent
storage, all escalation jobs survive service restarts,
ensuring operational reliability.

The system also supports agentic execution of
predefined diagnostic plans. Each alert category is
mapped to a structured execution plan containing
diagnostic commands and verification steps. Plans are
contextualized using alert metadata, and execution
results are captured for downstream analysis.
Integration with external network management
platforms enriches alerts with topology-level and
device-specific ~ context, improving situational
awareness and enabling more accurate root cause
analysis.

Alert data, diagnostic outputs, and enrichment results
are asynchronously forwarded to an LLM-based Al
service. The Al component generates structured,
human-readable incident summaries and stores vector
embeddings in a RetrievallAugmented Generation
(RAG) knowledge base. Notification delivery is
handled through email and WhatsApp channels.
Initial alerts are sent to Level 1 responders, while
subsequent notifications are triggered automatically
during escalation stages. Resolved alerts are archived
after a configurable retention

period. Archived records are stored separately to
maintain database performance while preserving
historical data for compliance and analytical
evaluation.

alert Ingestuon

Main Alert 2
Pipeline
ollama resguests <

(invlernad

Status Changes: NEW, IN_PROGRESS, RESOLVED, CLOSED

-1 Relational Database
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Figure 3: Alert status lifecycle in persistent storage
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4.3 Evaluation Metrics
The system performance is evaluated using the
following quantitative metrics: Mean Time to

Acknowledge MTTA):

ESCALATE

Figure 4: Duplicate alert handling workflow

Deduplication Rate:
Number of duplicates detected % 100 (1) Notification Reliability:
Total alerts

Deduplication =

Successful notifications 100 (3)

Delivery rate = ——
Total notifications

Escalation Accuracy:

Correct escalations
00 (2)

Escalation accuracy = —————
Total escalations

RESOLED

ESCALATE 15 Minutes

RESOLED

ESCALATE 30 Minutes

RESOLED

Figure 5: Execution of time-based escalation matrix
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5 Implementation

5.1 Asynchronous Message Queue Design
The alert processing pipeline relies on an
asynchronous message queue implemented using

RabbitMQ and the aio-pika client library. The queue-
based design decouples alert ingestion from alert
processing, enabling horizontal scalability and fault

isolation. The queue.py module defines both a
publisher and a consumer, ensuring reliable delivery
and processing of alert messages.

The publish alert function serializes incoming alert
payloads in JSON format and publishes them to a
durable message queue with persistent delivery mode
enabled. This guaranty that alerts are not lost in the
event of broker or service failures. The use of connect
robust further enhances system resilience by
automatically re-establishing the connection to the
message broker if an interruption occurs.

Figure 6: Asynchronous queue communication using RabbitM(Q).

Table 1: Methodological Phases and System Components

Phase Associated Components

Requirement Analysis

Alert lifecycle modeling, escalation matrix

Architectural Design

Microservices, RabbitMQ, PostgreSQL

Implementation

FastAPI, APScheduler, LLM Integration

Evaluation

MTTA, Reduplication Rate, Escalation Accuracy

5.2 Alert Processing Orchestration

Once a message is consumed from the queue, the
payload is passed to the process alert function within
the orchestrator service. This function represents the
core of the alert lifecycle management logic. It
performs validation, reduplication, state transitions,

and initiates downstream workflows such as escalation
scheduling and agentic plan execution.

The orchestrator operates within an asynchronous
SQLAlchemy session. This design enables non-
blocking database interactions while maintaining
transactional consistency. After successful processing,
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the session is explicitly committed to persist all state
changes. In the event of an exception, message
acknowledgment is deferred, allowing builtin retry
mechanisms to handle transient failures.

5.3 Ollama

Architecture

To integrate Large Language Model (LLM) capabilities
without impacting real-time alert handling, Al-related
tasks are processed asynchronously through a
dedicated response handler. The

Response Handling

Manket () ' OllamaResponseHander Class

Pipellne

- A]pan:l ma
; (lamarequasts | /' mesed i

)

T Sammatzation
_ ™ Processor

OllamaResponseHandler class consumes responses
from a separate queue (ollama.responses) and
processes summarization and embedding results
independently of the main alert pipeline.

Each Al request is associated with a unique request
identifier and alert identifier. This mapping allows
responses to be correlated with the originating alert.
Upon receiving a response, the handler inspects the
request type (summarization or embedding) and
delegates processing to the appropriate internal
method
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Figure 7: Ollama Al responses stored in the database

5.4 Al-Generated Incident Summarization
For summarization responses, the handler retrieves
the corresponding alert record from the database and
updates it with the generated summary. This summary
provides a concise, human-readable description of the
incident, combining alert metadata, diagnostic
outputs, and contextual reasoning produced by the
LLM.

After persisting the summary, the system triggers a
notification workflow to disseminate the information
to the relevant response team. This ensures that
operators receive actionable insights without
manually analyzing raw logs or command outputs.

5.5 Embedding Generation and RAG

Storage

Following summarization, the system automatically
requests vector embeddings for the generated
summary. These embeddings are stored in a Retrieval-
Augmented Generation (RAG) knowledge base using

the store chunk service. Each stored chunk includes
rich metadata such as alert title, team, severity, device
information, and occurrence timestamp. This design
enables future incidents to leverage historical context
through semantic similarity search. By grounding
LLM responses in previously resolved incidents, the
system  improves  consistency and  reduces
hallucination risks.

5.6 Notification Service Implementation

The notification subsystem uses asynchronous SMTP
communication via the aiosmtplib library. Email
alerts are generated using Jinja2 templates, allowing
dynamic insertion of alert details, diagnostic steps,
and Al-generated summaries. In addition to sending
emails, the notification service persists a copy of each
alert message to the file system, providing an audit
mechanism and enabling offline review and
debugging. SMTP configuration parameters are
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dynamically loaded from environment variables to
support flexible deployment across environments.

5.7 Agentic Diagnostic Execution Engine

To automate root cause investigation, the system
includes an agentic execution engine implemented in
the agent.py module. Diagnostic plans consist of
ordered command sequences defined in external
JSON configuration files. Each command may
include placeholders dynamically substituted using
the alertspecific context. The execute plan function
iterates through command steps and executes them

asynchronously. Platform-specific execution paths
ensure compatibility with both Windows and Unix
like systems. Command outputs, return codes, and
error messages are captured in structured form,
enabling downstream analysis by both human
operators and Al models. Timeout mechanisms and
error handling logic prevent long-running commands
from blocking workflows, balancing automation
benefits with operational safety.

4

Figure 8: External context enrichment using MCP server tools

5.8 Security and Fault Tolerance

Considerations

Security considerations include controlled execution
of diagnostic commands, strict input validation, and
isolation of Al services from core operational
workflows. Durable queues, persistent job stores, and
idempotent processing ensure the system can recover
gracefully from failures without data loss.

5.9 Summary of  Implementation

Contributions

The implementation demonstrates a production-
grade integration of asynchronous messaging,
persistent escalation, agentic automation, and Al-
driven analysis. By aligning system design with real-
world NOC operational requirements, the proposed
solution bridges the gap between academic research
and practical deployment.

5.10 Ollama Al Processing Service

Implementation

A key architectural decision is the separation of Al
processing into an independent microservice, referred
to as the Ollama Processing Service. This design
addresses latency isolation, fault containment, and
scalability. LLM inference and embedding generation
are computationally expensive and can degrade the

responsiveness of time-sensitive alert handling if
executed synchronously. By isolating Al workloads
into a separate FastAPl-based service, the system
ensures that alert ingestion, escalation, and
notification pipelines remain deterministic and
responsive even under heavy Al processing loads. This
architecture also allows independent scaling of

Al resources based on demand.
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5.11 Service Lifecycle Management and
FastAPI Integration

The Ollama service uses FastAPI and an asynchronous
lifespan context manager to manage

startup and shutdown behavior. During initialization,
the application conditionally launches

an AMQP consumer in the background, preventing
startup from blocking if the message broker is
unavailable.

The lifespan manager ensures graceful shutdown by
canceling the consumer task and awaiting
termination, which is critical in production
deployments with frequent restarts.

5.12 Health Monitoring and Observability
The service exposes lightweight HTTP endpoints for
health checks, allowing orchestration platforms like
Kubernetes or Docker Compose to verify service
availability without invoking Al workloads. Logging is
configured using environmentdriven log levels to
support flexible verbosity across environments.

5.13 Ollama Processor Design

The core Al functionality is encapsulated within the
OllamaProcessor class, which abstracts interactions
with the Ollama inference server and supports
summarization and  embedding  generation.
Configuration parameters such as model selection
and base URLs are externalized via environment
variables, promoting portability and reproducibility.

5.14 Prompt Engineering for Incident

Summarization

Summarization requests are constructed using
structured prompts that combine alert meta-

data with diagnostic command outputs. Prompts
instruct the model to produce concise, technical
summaries suitable for NOC operators, improving
consistency and relevance. An asynchronous HTTP
client with extended timeouts accommodates variable
inference latencies. Failures degrade gracefully,
returning fallback summaries instead of interrupting
the alert lifecycle.

5.15 Embedding Generation for Semantic
Memory

For embedding generation, the processor interacts
with Ollama’s embedding API to transform textual
summaries into high-dimensional vector
representations. These embeddings form the
foundation of the RAG capability, enabling semantic
similarity search across historical incidents. Robust
exception handling ensures that transient errors or
missing models do not propagate failures upstream.

5.16 Asynchronous Request Consumption
Incoming Al requests are processed by the
OllamaConsumer component, which listens on the
ollama.requests queue. Each message contains a
request identifier, alert identifier, request type, and
data payload. The consumer dispatches requests to the
appropriate processor method and logs detailed
diagnostics. After processing, responses are published
to the ollama.responses queue, decoupling Al
computation from downstream persistence and
notification logic.

5.17 Persistence of Al Outputs

Al-generated summaries are persisted to the file
system in a structured, human-readable format,
providing an immutable record for auditing,
debugging, and offline analysis.

5.18 Response Publishing and Reliability

Guaranties

The response publishing mechanism uses durable
queues and persistent message delivery to ensure Al
results are reliably delivered to the main alert service.
AMQP connections are closed after publishing to
prevent resource leaks.

5.19 Architectural Implications

The Ollama service demonstrates how LLM-based
intelligence can be safely integrated into operational
systems using asynchronous messaging and
microservice isolation. This approach mitigates
common risks such as latency amplification and
cascading failures while preserving

the benefits of automated reasoning and
summarization
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6 Results

The implemented Al-powered NOC Alert Triage and
Escalation System was evaluated in a controlled
experimental environment designed to simulate real-
world network operations. The evaluation focused on
multiple operational metrics, including Mean Time to
Acknowledge (MTTA), alert reduplication accuracy,
escalation effectiveness, and the utility of Al-generated
incident The results indicate that
integrating microservices, asynchronous messaging,
and Large Language Model (LLM)-based intelligence

summaries.

&0 4

Mumber of Alerts
]

20 4

CRITICAL

HIGH E DLW el

computationally intensive. The FastAPl-based Alert
Ingestion and Orchestration Service successfully
ingested and normalized all alerts. System logs
indicated that alert ingestion latency remained below
50 milliseconds per event on average, confirming the

Madium

significantly improves alert management efficiency,
reduces operator workload, and enhances situational
awareness. The severity distribution demonstrates
that CRITICAL and HIGH alerts represent the most
operationally significant incidents, while MEDIUM
and LOW alerts contribute substantially to overall
alert volume. This underscores the need for
automated prioritization

and escalation mechanisms. One of the primary
objectives of the system was to ensure that incoming
alerts are processed in real time, even when Al-driven
summarization and embedding generation tasks are

High L Y] Chtica T Pl

suitability of the architecture for enterprise-scale
NOC operations. To evaluate system behavior under
varying alert loads, a temporal analysis of daily alert
volume was conducted.

Figure 10: Daily Alert Volume Over Time
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The timeseries analysis shows fluctuations
corresponding to simulated stress scenarios; ingestion
latency remained stable due to asynchronous
decoupling via RabbitMQ. Duplicate alerts are a
common source of alert fatigue in traditional NOC
environments. In the experimental setup, deliberately

injected duplicate alerts were used to test the
reduplication ~ mechanism. The  orchestrator’s
duplicate detection algorithm successfully identified
and filtered 95% of duplicate alerts, significantly
reducing operator cognitive overload. To evaluate
escalation workflow effectiveness, alerts were analyzed
across escalation levels.

Alars by Escalalion Laye

100

ao

&0

sumiber of Aleits

20

ESaa ki Lesed

Figure 11: Distribution of Alerts by Escalation Level

The majority of alerts were resolved at Level 1, while
a smaller subset required escalation to higher tiers,
demonstrating effective early-stage intervention.
Scalability and fault tolerance were key evaluation
criteria. Stress tests involving spikes of up to 500 alerts
per minute showed:

* No message loss

e Minimal processing delay

* Stable Al integration

To assess resolution performance improvements, the
average alert duration per status category was

calculated. The results demonstrate shorter resolution
times for alerts processed under automated
workflows, confirming reductions in MTTA and
MTTR compared to traditional manual

handling. Embedding generation and storage in the
RAG knowledge base enabled semantic retrieval of
historical incidents. When similar alerts reoccurred,
operators leveraged prior Al summaries to reduce
repetitive  analysis. This capability effectively
transforms the NOC
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Figure 12: Average Alert Duration by Status

into a knowledge-enhanced operational environment.
Notifications were tested across email and WhatsApp
channels. Delivery confirmation averaged under 30
seconds for Level 1 notifications, ensuring rapid

acknowledgment. Escalation notifications were
automatically triggered according to persistent
scheduling rules without human intervention,
ensuring SLA compliance. To evaluate alert lifecycle
transitions across severity categories, a cross-tabulated
severity-versus-status analysis was performed.

Severity vs. Status of Alerts
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Figure 13: Severity vs Status Distribution

The visualization confirms that higher-severity alerts
exhibit greater escalation frequency, while lower-
severity alerts are predominantly filtered or resolved at
early stages. A distinguishing feature of the system is
its integration of LLM-based summarization and
Retrieval-Augmented ~ Generation (RAG) for
knowledge enrichment. Upon ingestion, diagnostic
outputs and contextual metadata were processed

asynchronously by the Ollama Al service. The LLM
generated concise, human-readable summaries
including probable root causes and recommended
actions. Operator feedback collected during
experimental trials indicates that Al-generated
summaries reduced incident comprehension time by
approximately 40-50%, significantly improving
response  efficiency. To examine longer-term
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operational trends, a monthly comparison of total
alert volume was conducted.
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Figure 14: Monthly Alert Trends

The monthly distribution validates the system’s ability
to maintain consistent performance under varying
operational loads.

The experimental evaluation confirms that the
proposed Al-powered NOC system achieves its
primary objectives:

e Reduced alert fatigue

e Accelerated acknowledgment and resolution

* Improved situational awareness

* Scalable, fault-tolerant performance

By combining realtime processing, automated
escalation, and Al-driven summarization, the system
bridges the gap between conventional rule-based alert
management and  intelligent,  context-aware
operations. These results provide strong empirical
evidence supporting the integration of microservices,
asynchronous messaging, and LLM intelligence in
modern NOC environments.
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Figure 15: Alert Trends by Severity Over Time

The line chart illustrates daily alert counts for
CRITICAL, HIGH, MEDIUM, LOW, MAJOR, and

other priority classifications, enabling analysis of

operational intensity and severity fluctuations over
time. The results indicate observable spikes in HIGH
and CRITICAL alerts, particularly during mid-
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January 2026, corresponding to simulated peak-load
and stress-test conditions. Despite these increases, the
system maintained stable ingestion and processing
performance due to its asynchronous microservice
architecture, demonstrating

the robustness of the decoupled alert ingestion and
Al-processing pipeline. The results indicate that core
infrastructure components, particularly firewall and
storage servers, produced the greatest alert volume.
Application and database servers also contributed
significantly, while switching and authentication

devices generated comparatively fewer alerts. This
distribution highlights that a limited number of
devices account for a substantial portion of overall
alert activity, emphasizing the importance of targeted
monitoring and proactive maintenance in reducing
alert noise.

Overall, the temporal severity trend analysis validates
the scalability, responsiveness, and prioritization
effectiveness of the proposed Al-powered NOC Alert
Triage and Escalation System

Tap U0 Devie Carsealing St

Figure 16: Alert Distribution Across Core Infrastructure Devices

Table 2: Key Evaluation Metrics of the Al-powered NOC System

Metric Result
Mean Time to Acknowledge (MTTA) 45 sec (avg)
Duplicate Alert Reduction 95%
Escalation Level 1 Resolution 78%
Escalation Level 2+ Resolution 22%

Al-generated Summary Effectiveness

Reduced comprehension time by 40-50%

Notification Delivery (Level 1)

30 sec

Peak Load Handling

500 alerts/min without message loss

7 Discussion

The experimental results demonstrate that integrating
persistent automated escalation with Al-driven
summarization significantly improves operational

performance in Network Operations Centers
(NOCs). Quantitative evaluation indicates
measurable reductions in Mean Time to Acknowledge
(MTTA), improved duplicate detection accuracy, and
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enhanced notification reliability under varying alert
loads. These improvements can be attributed to
architectural decoupling, asynchronous processing,
and context-enriched Al reasoning.

From a systems perspective, the microservice-based
architecture contributes directly to scalability and
fault isolation. Let A represent the incoming alert rate
(alerts per minute) and p represent the average
processing rate of a single service instance. In
traditional monolithic systems, system stability
requires A < (. However, in the proposed distributed
architecture, horizontal scaling allows the effective
processing rate to become n|l, where n represents the
number of service replicas. This ensures that the
system remains stable under burst conditions (A < np),
thereby reducing queue buildup and acknowledgment
latency. The use of asynchronous message queues
further improves throughput and responsiveness. By
decoupling alert ingestion from Al inference, the
system prevents latency amplification caused by
computationally  expensive = LLM  operations.
Experimental observations confirm that ingestion
latency remained consistently low even during peak
Al workload conditions.

This validates the design hypothesis that isolating
inference-heavy components into independent
microservices mitigates cascading delays and preserves
real-time alert handling guarantees.

Beyond infrastructure performance, the integration of
LLM-generated incident summaries enhances
cognitive efficiency for operators. Traditional alert
systems require manual log inspection and
correlation, increasing cognitive load and decision
latency. In contrast, Al-generated summaries
synthesize diagnostic outputs, enrichment data, and
historical knowledge into structured, human-readable
explanations. Operator feedback and response-time
measurements suggest a statistically significant
reduction in incident comprehension time.

If Tm represents the average manual analysis time and
Tai represents Al-assisted analysis time, experimental
results indicate that Tai < Tm, with observed
reductions ranging between 40-50%  under
controlled conditions.

However, the reliability of Al-generated insights
remains dependent on input data quality. Let Qi
denote input data completeness and Qo denote
output summary reliability. Empirical observation

suggests a positive correlation between Qi and Qo,
highlighting the importance of accurate alert
metadata, well-structured diagnostic plans, and timely
enrichment data.

In incomplete or ambiguous scenarios, the probability
of partial or suboptimal Al reasoning increases.
Therefore, human validation remains essential,
particularly for high-severity or safety-critical
incidents.

The integration of persistent, database-backed
escalation policies introduces formal reliability
guarantees into the alert lifecycle. Unlike in-memory
schedulers, persistent job stores ensure that escalation
state survives service restarts. If Pf represents system
failure probability and Rp represents recovery
persistence, traditional volatile schedulers exhibit Rp
=~ 0 during restarts, whereas the architecture
maintains Rp = 1, ensuring no escalation loss. This
significantly enhances SLA compliance and
operational accountability. The agentic diagnostic
execution engine further strengthens incident
management consistency. By enforcing structured
diagnostic workflows, the system reduces variability
caused by operator experience differences. Escalation
thresholds defined through configurable matrices
introduce deterministic state transitions, ensuring
predictable behavior across teams and environments.
When combined with LLM-powered summarization
and Retrieval-Augmented Generation (RAG), the
system enables knowledge continuity across incidents.
Historical embeddings allow semantic similarity
matching, effectively transforming prior resolutions
into reusable operational intelligence. Despite these
advantages, several operational considerations
remain. First, LLM latency variability must be
continuously monitored to prevent resource
saturation. Second, prompt engineering strategies
require periodic refinement to maintain summary
relevance and minimize hallucination risk. Third,
automated remediation should be introduced
cautiously to avoid unintended cascading effects in
complex network environments. Overall, the findings
indicate that a coordinated integration of
microservices, asynchronous communication,
persistent escalation scheduling, agentic diagnostics,
and LLM-driven reasoning produces a resilient,
scalable, and contextaware NOC framework. The
system successfully balances automation with human

https://sesjournal.com

| Ahmad, 2026 |

Page 441


https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

Volume 4, Issue 2, 2026

oversight, enhancing operational efficiency while
preserving safety, transparency, and adaptability.
These results support the broader hypothesis that Al-
augmented  operational  infrastructures  can
significantly reduce alert fatigue, accelerate response
times, and enable data-driven decision-making in
large-scale network environments.

8 Conclusion and Future Work

This study presents an Al-driven NOC Alert Triage
and Escalation System that integrates microservices,
asynchronous messaging, autonomous diagnostic
processes, and Large Language Models (LLMs). The
system effectively mitigates alert fatigue, reduces
response times, and enhances situational awareness by
delivering operators actionable and contextually
enriched insights. Its microservice-based design and
durable escalation protocols guarantee scalability,
reliability, —and  robustness in  operational
environments. Future work will focus on extending
the system with predictive escalation capabilities,
enabling proactive alert handling based on historical
patterns and Al-driven forecasting. Adaptive learning
mechanisms will be incorporated to continuously
refine alert classification, reduplication, and
escalation strategies based on operator feedback and
incident  outcomes.  Additionally, automated
remediation workflows will be explored to allow the
system to autonomously resolve routine incidents,
further reducing MTTR and operational overhead
while maintaining human oversight for complex cases.
These enhancements aim to create a fully intelligent
and selfoptimizing NOC framework capable of
managing increasingly complex and dynamic network
environments. Although the Al-powered NOC Alert
Triage and Escalation System introduce significant

improvements in operational efficiency, several
enhancements can further extend its capabilities:

1. Predictive Scaling: Incorporate machine learning
models to anticipate incidents before they occur,
enabling proactive alerting and reducing MTTA.

2. Adaptive Learning: Continuously refine alert
classification, reduplication, and escalation strategies
based on historical incident data and operator
feedback.

3. Automated Remediation: Develop autonomous
workflows for routine incident resolution, allowing
the system to take corrective actions without human
intervention while maintaining oversight for complex
scenarios.

4. Integration with Additional Monitoring Platforms:
Expand data sources to include heterogeneous
network and application monitoring tools for richer
context and improved Al-driven reasoning.

5. Enhanced LLM Explainability: Improve the
transparency of Algenerated summaries and
recommendations,  providing  operators  with
interpretable reasoning to build trust in automated
decision-making.

6. Scalability and Multi-Tenant Support: Optimize the
system for large-scale, multitenant environments,
enabling centralized management of multiple NOCs
or departments.

7. RealTime Feedback Loops: Implement
mechanisms for operators to provide immediate
feedback on Al summaries and escalation actions,
supporting continuous system improvement.

These directions collectively aim to create a fully
intelligent, self-optimizing NOC frame-work capable
of handling increasingly complex and dynamic
network environments, while balancing automation
with essential human oversight

Table 3: Planned Enhancements and Expected Benefits for AI-Powered NOC System

Enhancement

Expected Benefit

Predictive Scaling

Reduce MTTA by anticipating incidents

Adaptive Learning

Improved classification, reduced false positives

Automated Remediation

Decrease MTTR, reduce manual workload

Integration with Additional Monitoring
Platforms

Richer alert context, better Al reasoning
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Enhanced LLM Explainability Increased operator trust and adoption
Scalability and Multi-Tenant Support Centralized management of multiple NOCs
Real-Time Feedback Loops Continuous system improvement and models refine
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