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1. Introduction

Abstract
Climate prediction and atmospheric forecasting remain critical challenges in

particularly at high spatial resolutions where
computational constraints limit traditional General Circulation Models

(GCMs). This paper presents a comprehensive review and methodological

environmental  science,

framework for machine learning-based downscaling of climate models, integrating
remote sensing and Geographic Information System (GIS) data to achieve high-
resolution atmospheric forecasting. Statistical downscaling techniques have
evolved considerably with the advent of deep learning architectures, including
convolutional neural networks (CNNs), recurrent neural networks (RNNs), and
generative adversarial networks (GANs). This research synthesizes current
approaches, evaluates their efficacy across diverse geographic and climatic
contexts, and proposes an integrated framework that leverages multi-source
satellite data, topographic information, and historical climate records. The
methodology incorporates advanced preprocessing techniques, feature engineering
from GIS datasets, and ensemble learning strategies to address the inherent
uncertainties in climate projections. Performance metrics demonstrate that
machine learning approaches can achieve spatial resolutions of 1-4 km with
significantly reduced computational costs compared to dynamical downscaling.
Key findings indicate that hybrid models combining physical constraints with
data-driven learning outperform purely statistical methods, achieving correlation
coefficients exceeding 0.85 for temperature and 0.72 for precipitation variables.
The framework addresses critical challenges including spatial transferability,
temporal stability, and extreme event prediction. This work contributes to the
growing intersection of artificial intelligence and climate science, offering practical
insights for operational weather services, agricultural planning, and climate
adaptation strategies.

(IPCC, 2023). Accurate prediction of atmospheric

Climate change represents one of the most
pressing challenges facing humanity in the twenty-
first century, with far-reaching implications for
ecosystems, economies, and societies worldwide

conditions at fine spatial and temporal scales is
essential for adaptation strategies,
agricultural planning, water resource
management, and disaster risk reduction (Masson-

effective
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Delmotte et al., 2021). However, Global Climate
Models (GCMs), which form the foundation of
climate projections, typically operate at coarse
spatial resolutions of 100-300 km due to
computational limitations (Senanayake et al.,
2024). This resolution gap creates significant
challenges for local and regional decision-making,
where stakeholders require information at scales
of 1-10 km to inform planning and policy
decisions (Meng et al., 2024).

Traditional approaches to bridging this scale gap
have relied on dynamical downscaling, which
employs Regional Climate Models (RCMs) to
simulate atmospheric processes at higher
resolutions within limited domains (Deep &
Verma, 2024). While dynamical downscaling
provides physically consistent results, it demands
substantial computational resources and remains
constrained by the quality of boundary conditions
from GCMs (Lezama Valdes et al., 2021).
Statistical downscaling offers a computationally
efficient alternative by establishing empirical
relationships between large-scale atmospheric
variables and local climate characteristics (Zhu et
al., 2025). Recent advances in machine learning,
particularly deep learning architectures, have
revolutionized statistical downscaling by enabling
the extraction of complex, nonlinear patterns
from high-dimensional climate data (Reichstein et
al,, 2019).

The integration of remote sensing and Geographic
Information System (GIS) data into climate
downscaling represents a paradigm shift in
atmospheric forecasting methodologies (Kemarau
et al., 2025). Satellite-derived observations provide
unprecedented spatial coverage and temporal
frequency, capturing surface characteristics, land
use patterns, vegetation indices, and topographic
features that influence local climate variability
(Peng et al., 2019). GIS platforms enable the
systematic integration of diverse geospatial
datasets, facilitating the development of
comprehensive feature spaces for machine
learning models (Xu et al., 2017). This multi-
source data fusion approach addresses key
limitations of traditional statistical methods,
which often rely solely on atmospheric variables

from coarse-resolution climate models (Chen et

al.,, 2021).

1.1 Research Objectives

This research addresses critical gaps in the current
understanding and application of machine
learning-based climate downscaling. The primary
objectives are threefold: (1) to provide a
comprehensive  synthesis of  state-of-the-art
machine learning techniques for climate model
downscaling,  evaluating  their  theoretical
foundations and practical performance across
diverse geographic contexts; (2) to develop an
integrated methodological ~framework that
systematically incorporates remote sensing
observations and GIS-derived predictors into
downscaling models, optimizing feature selection
and data preprocessing strategies; and (3) to assess
the accuracy, reliability, and transferability of
machine learning downscaling approaches for
high-resolution atmospheric forecasting, with
particular attention to extreme events and
uncertainty quantification.

1.2 Significance of the Study

The significance of this work extends across
multiple domains of climate science and practical
applications. First, it contributes to the theoretical
advancement of statistical downscaling by
elucidating the capabilities and limitations of
modern machine learning architectures in
capturing climate dynamics (Vandal et al., 2019a).
Second, the integration of remote sensing and GIS
data addresses the critical need for physically
informed predictors that capture localscale
processes not resolved in GCMs (Sachindra et al.,
2018). Third, the developed framework offers
practical guidance for operational implementation
in weather services, enabling cost-effective
generation of high-resolution climate information
for climate adaptation planning (Abdalla, 2024).
Finally, this research addresses the pressing need
for methodological transparency and
reproducibility in climate downscaling studies,
providing  detailed protocols for model
development, validation, and uncertainty
assessment.
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2. Literature Review

2.1 Climate Model Downscaling: Theoretical
Foundations

Climate model downscaling emerged as a distinct
research field in the 1990s, driven by the need to
translate coarse-resolution GCM outputs into
actionable information for regional impact
assessments (Keller et al., 2022). The fundamental
principle underlying downscaling is the
establishment of relationships between large-scale
atmospheric circulation patterns (predictors) and
local-scale climate variables (predictands), based
on the assumption that these relationships remain
stationary across different climate states (Maraun
& Widmann, 2018). Two primary approaches
have evolved: dynamical downscaling, which
employs physicssbased RCMs to simulate
atmospheric processes at higher resolutions, and
statistical downscaling, which uses empirical
methods to derive local climate information from
large-scale predictors (Kotamarthi et al., 2021).
Dynamical downscaling preserves the physical
consistency of atmospheric processes and explicitly
represents feedbacks between surface
characteristics and atmospheric circulation
(Giorgi, 2020). However, RCMs inherit systematic
biases from driving GCMs and introduce their
own model-specific uncertainties (Izzaddin et al.,
2025). The computational intensity of dynamical
downscaling severely limits ensemble generation
and scenario exploration, restricting uncertainty
quantification efforts (Resseguier et al., 2021).

Statistical ~ downscaling,  conversely,  offers
computational  efficiency and  facilitates
probabilistic ~ climate  projections  through

ensemble approaches, but relies on the critical
assumption of predictor-predict and relationship
stationarity under changing climate conditions

(Najafi et al., 2025a).

2.2 Traditional Statistical Downscaling Methods
Classical statistical downscaling techniques
encompass a spectrum of approaches, ranging
from simple regression models to more
sophisticated weather typing schemes (Labeurthre
et al., 2024). Multiple linear regression (MLR)
represents the most straightforward approach,
establishing linear relationships between large-

scale predictors and local climate variables (Najafi
et al.,, 2025b). Despite its simplicity, MLR often
fails to capture nonlinear climate dynamics and
complex spatial patterns. Weather generators
extend statistical downscaling by incorporating
stochastic components to reproduce observed
climate variability, particularly for precipitation
(Kim et al., 2025). These methods employ Markov
chain models to simulate precipitation occurrence
and probability distributions for precipitation
amounts and other variables. Analog methods
represent another classical approach, identifying
historical weather patterns similar to GCM-
predicted large-scale circulation and using
corresponding observed local conditions as
downscaled estimates (Zhao et al., 2024). While
analog methods preserve observed spatial and
temporal characteristics, their performance
depends  critically on  the size and
representativeness of the historical database.
Principal Component Analysis (PCA) and
Canonical Correlation Analysis (CCA) offer
dimensionality reduction frameworks that identify
dominant modes of variability in large-scale
predictors and establish relationships with local
climate patterns (Jewson, 2020). These methods
effectively reduce computational complexity but
may overlook important higher-order patterns and
nonlinear relationships (Hannachi, 2021).

2.3 Machine Learning Revolution in Climate
Downscaling

The application of machine learning to climate
downscaling has experienced exponential growth
since the mid-2000s, driven by advances in
computational power, algorithm development,
and data availability (Reichstein et al., 2019).
Artificial Neural Networks (ANNSs) pioneered the
machine learning approach, demonstrating
superior performance to traditional regression
methods in capturing nonlinear climate
relationships (Hannachi, 2021). Early ANN
applications focused on single-layer perceptrons
and multi-layer feedforward networks, achieving
notable success in temperature and precipitation
downscaling (Jafarzadeh et al., 2021). However,
these shallow architectures struggled with high-
dimensional predictor spaces and often suffered
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from overfitting when training data were limited.
Support Vector Machines (SVMs) emerged as
powerful alternatives to ANNSs, offering robust
performance through structural risk minimization
and kernel methods that implicitly map data into
higher-dimensional spaces (Jiménez Moran, 2023).
SVMs demonstrated particular effectiveness in
precipitation ~ downscaling, =~ where  they
outperformed traditional methods in capturing
extreme events (Malhomme, 2024). Random
Forests (RF) and other ensemble methods
introduced additional advantages through their
ability to handle complex interactions, assess
variable importance, and quantify prediction
uncertainty (Jokar et al., 2025). RF models have
shown exceptional performance in spatial
downscaling applications, leveraging geographic
predictors such as elevation, slope, and land cover
to refine climate projections (Bedia et al., 2013).

2.4 Deep Learning Architectures for Climate
Applications

Deep learning has revolutionized climate
downscaling by enabling direct learning of
hierarchical feature representations from raw data,
eliminating the need for manual feature
engineering  (Reichstein et al., = 2019).
Convolutional Neural Networks (CNNs) have
emerged as the dominant architecture for spatial
downscaling, leveraging their ability to extract
local patterns through convolutional filters and
progressively build representations of increasing
complexity (Vandal et al., 2019b). The DeepSD
framework, developed by Vandal et al. (2019),
demonstrated that CNNs trained on large climate
datasets could achieve super-resolution of climate
variables, producing realistic fine-scale patterns
that preserve spatial coherence and physical
consistency. Super-resolution CNNs employ
encoder-decoder architectures that compress
spatial information into latent representations
before reconstructing high-resolution outputs,
learning complex mappings between coarse and
fine-scale climate fields (Bano-Medina et al., 2020).
Recurrent Neural Networks (RNNs), particularly
Long ShortTerm Memory (LSTM) networks,
address the temporal dimension of climate
downscaling by maintaining hidden states that

capture sequential dependencies (Rasp et al.,
2018). LSTMs have proven especially effective for
precipitation downscaling, where they successfully
model the persistence and intermittency
characteristics of rainfall (Xu et al., 2022).
Attention mechanisms further enhance RNN
capabilities by allowing models to focus on
relevant time steps when making predictions,
improving performance on long sequences (Cheng
et al., 2022). Generative Adversarial Networks
(GANSs) represent a paradigm shift in downscaling
methodology, employing adversarial training to
generate realistic high-resolution climate fields
that match the statistical distributions of observed
data (Stengel et al, 2020). GANs have
demonstrated particular promise in producing
sharp, realistic precipitation patterns that avoid
the smoothing artifacts common in regression-

based approaches (Wang et al., 2021).

2.5 Remote Sensing Integration in Climate
Downscaling

Remote sensing technology has transformed
climate observation and modeling, providing
spatially continuous datasets that capture land
surface characteristics, atmospheric conditions,
and oceanic properties at unprecedented temporal
frequencies (Peng et al.,, 2019). Satellite-derived
products offer critical advantages for climate
downscaling, including consistent global coverage,
multi-decadal time series for trend analysis, and
the ability to observe variables not directly
simulated by climate models (Sdraka et al., 2022).
Land Surface Temperature (LST) from thermal
infrared sensors, such as MODIS and Landsat,
provides direct observations of surface thermal
conditions at resolutions of 30-1000 meters,
enabling calibration and validation of downscaled
temperature fields (Yoo et al., 2018). Precipitation
products from merged satellite-gauge datasets,
including  GPM and CHIRPS, offer high-
resolution rainfall estimates that capture spatial
variability patterns for training downscaling
models (Xu et al., 2022). Vegetation indices,
particularly NDVI and EVI, serve as proxies for
land surface processes and moisture availability,
providing valuable predictors for temperature and
precipitation downscaling (Pervez et al., 2021).
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Soil moisture estimates from SMAP and SMOS
capture subsurface hydrological conditions that
influence local climate through land-atmosphere

feedbacks (Sharma et al., 2020).

2.6 GIS-Based Predictors and Spatial Analysis

Geographic Information Systems provide essential
frameworks for organizing, analyzing, and
integrating diverse spatial datasets relevant to
climate downscaling. Digital Elevation Models
(DEMs) represent the most fundamental GIS-
derived  predictor, capturing  topographic
variations that strongly influence temperature,
precipitation, and wind patterns through
orographic effects. Terrain attributes computed
from DEMs, including slope, aspect, curvature,
and topographic position index, characterize local
landform features that modulate microclimate
conditions (Verhagen & Sarris, 2023). Elevation
alone explains substantial variance in temperature
fields, with lapse rates typically ranging from 5 to
7°C per 1000 meters, though these rates vary
seasonally and geographically (Nigrelli et al.,
2018). Land cover and land use classifications
from Landsat, Sentinel-2, and MODIS
characterize surface properties that influence
energy partitioning, roughness, and moisture
availability (ED Chaves et al., 2020; Nigrelli et al.,
2018). Urban areas, forests, agricultural lands, and
water bodies exhibit distinct thermal and
hydrological characteristics that create local
climate variations not captured by coarse-
resolution models. Distance-based metrics,
including proximity to coastlines, water bodies,

and urban centers, serve as proxies for maritime
influences, moisture sources, and anthropogenic

heat effects (Nasiri et al., 2022).

3. Methodology

3.1 Integrated Framework Architecture

The proposed methodology implements a
comprehensive framework for machine learning-
based climate downscaling that systematically
integrates multiple data sources, preprocessing
techniques, and modeling approaches. The
framework consists of five primary modules: (1)
data acquisition and management, handling
diverse inputs from climate models, remote
sensing platforms, and GIS databases; (2)
preprocessing  and  feature
transforming raw data into model-ready formats
with optimized predictor sets; (3) model
development and training, implementing multiple
machine learning architectures with
hyperparameter optimization; (4) ensemble
generation and uncertainty quantification,
combining predictions from multiple models to
improve robustness; and (5) validation and
operational deployment, conducting
comprehensive performance assessment and
establishing workflows for routine forecasting
applications. Figure 1 illustrates the overall
framework architecture, depicting data flows
between modules and feedback loops for iterative
refinement. The modular design enables flexible
configuration for different geographic regions,
climate variables, and application requirements.

engineering,

Table 1: Primary Data Sources for Climate Model Downscaling

Data Category Source/Platform

Climate Model Output  CMIP6 GCMs

Surface Temperature MODIS LST
Precipitation GPM/CHIRPS
Vegetation Indices MODIS NDVI/EVI
Elevation SRTM DEM

Land Cover ESA CCI/MODIS

Spatial Resolution

Temporal Coverage

100-250 km 1850-2100

1 km 2000-present
5-25 km 1981-present
250 m 2000-present
3090 m Static

300 m 1992-present
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The data acquisition module implements
automated workflows for retrieving and organizing
datasets from various sources, as detailed in Table
1. Climate model outputs from CMIP6 serve as
primary predictors, including variables such as
temperature at multiple pressure levels,
geopotential height, specific humidity, and wind
components (Eyring et al., 2016). The selection of
CMIP6 models balances ensemble diversity with
computational feasibility, typically incorporating
10-15 models that span the range of climate

sensitivities and  regional = performance

characteristics. Remote sensing datasets provide
crucial surface observations, with MODIS LST
offering daily temperature measurements at 1 km
resolution, GPM/CHIRPS delivering
precipitation estimates at 5-25 km resolution, and
MODIS vegetation indices capturing land surface
phenology at 250 m resolution. GIS datasets
include SRTM DEMs at 30-90 m resolution for
topographic characterization and land cover
classifications from ESA CCI or MODIS at 300 m

resolution for surface property mapping.

Integrated ML-Based Climate Downscaling Framework

Data Acquisition
& Management

Remote Sensing
Data Sources

«GCM ts + MODIS LST
« Satellite data’ * GPM/CHIRPS
* GIS datasets * NDVI/EVI
Preprocessing &
Feature Engineering

« Spatial onization
Gality com
+ Featurgselection

CNN Models LSTM Models GAN Models

N

(1-4 km resolution)

[High-Resolution Climate Forecasts

Figure 1: Integrated ML-Based Climate Downscaling Framework Architecture

3.2 Data Preprocessing and Quality Control

Comprehensive preprocessing transforms
heterogeneous raw data into standardized formats
suitable for machine learning applications. Spatial
harmonization employs bilinear or conservative
interpolation to resample all predictor variables
onto a common grid matching the target
resolution, typically 1-4 km for high-resolution
applications (Bartok et al, 2017). Temporal
alignment ensures synchronization of observations
and model outputs, accounting for different time

zones, calendar systems, and sampling frequencies.
Missing data imputation utilizes spatial and
temporal interpolation techniques, including
inverse distance weighting for sparse station data
and temporal averaging for satellite retrievals
affected by cloud cover (Teegavarapu &
Chandramouli, 2005). Quality control procedures
detect and flag erroneous values through range
tests, temporal consistency tests, spatial
consistency tests, and homogeneity tests to identify
artificial discontinuities related to
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instrumentation changes (Durre et al., 2008).
Normalization and standardization transform
predictors to comparable scales using zscore
standardization or min-max scaling to specified

ranges (Raschka, 2020).

3.3 Deep Learning Model Architectures
Convolutional Neural Networks employ multi-
layer structures with encoder blocks that

Input Conv Conv Conv
GCM Block Block Block
Data 1 2 3
|
100km > OO o =

progressively reduce spatial dimensions while
increasing feature depth, followed by decoder
blocks that reconstruct high-resolution outputs.
Figure 2 shows the superresolution CNN
architecture used for climate downscaling,
featuring skip connections that preserve fine-scale
features throughout the encoding-decoding
process.

Latent Deconv| eco Output
C NN BN -
2 3 Data
|
1
’ '
"""""""""" 24 1-4km

Super-Resolution CNN Architecture for Climate Downscaling

Figure 2: Super-Resolution CNN Architecture for Climate Downscaling

3.3 Feature Engineering and Selection

Feature engineering  systematically  derives
informative predictors from raw data, enhancing
model performance and physical interpretability.
Temporal features capture cyclical patterns
through sine and cosine transformations of day-of-
year and hour-of-day, enabling models to learn
seasonal and diurnal variations (Kuhn & Johnson,
2013). Lagged variables incorporate temporal
memory by including predictor values from
preceding time steps, particularly valuable for
strong  persistence.  Spatial
derivatives computed from GIS datasets include
slope and aspect from DEMs, temperature
gradients across terrain, and proximity metrics to
geographic features. Interaction terms represent
products or ratios of primary predictors, capturing
synergistic effects. Domain-specific features
leverage physical relationships, including potential

variables  with

evapotranspiration estimates, stability indices
from atmospheric profiles, and orographic
precipitation indicators (Duan & Mei, 2014).
Feature selection reduces dimensionality through
Recursive Feature Elimination and correlation
analysis to identify and eliminate highly collinear

variables (Guyon & Elisseeff, 2003).

3.4 Machine Learning Model Architectures

The framework implements multiple machine
learning architectures, each offering distinct
advantages. Convolutional Neural Networks
employ multi-layer convolutional structures with
encoder blocks that progressively reduce spatial
dimensions while increasing feature depth,
followed by decoder blocks that reconstruct high-
resolution outputs (Bafio-Medina et al.,, 2020).
Residual connections facilitate gradient flow in
deep networks, enabling training of architectures
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with 20-50 layers. Long ShortTerm Memory
networks address temporal dependencies through
gated memory cells that selectively retain or
discard  information  across  time  steps.
Bidirectional LSTMs process sequences in both
forward and backward directions, capturing both
past and future context (Reichstein et al., 2019).
Hybrid CNN-LSTM architectures combine spatial
and temporal processing capabilities, applying
convolutional layers to extract spatial features

from each time step, then feeding resulting feature
sequences into LSTM layers for temporal
modeling (Shi et al., 2015). Generative Adversarial
Networks consist of generator networks that
produce high-resolution climate fields and
discriminator networks that distinguish between
generated and observed samples, encouraging
generators to produce realistic outputs that avoid
smoothing artifacts (Wang et al., 2021).

Table 2: Machine Learning Model Configurations and Hyperparameters

Model Type Architecture
Super-Resolution CNN  U-Net encoder-decoder
Bidirectional LSTM 3-layer BiLSTM
Random Forest Ensemble of 500 trees
GAN SRGAN generator

3.5 Training Strategies and Ensemble Methods

Effective training strategies balance model
complexity with generalization capability. Data
augmentation generates additional training
samples through spatial transformations, temporal
shifts, and controlled noise introduction (Shorten
&  Khoshgoftaar, 2019). Transfer learning
leverages pre-trained models from related
domains, fine-tuning with local data to accelerate
convergence (Pan & Yang, 2009). Cross-validation
frameworks partition data into multiple folds,
with spatial cross-validation ensuring models
trained on one region perform adequately in
distant areas (Roberts et al., 2017). Dropout
regularization randomly deactivates neurons
during training, with rates of 0.2-0.5, while L2
regularization penalizes large parameter values.
Ensemble approaches combine predictions from
multiple models to improve accuracy and quantify
uncertainty. Simple averaging weights all members
equally, while Bayesian Model Averaging
computes weights based on models' likelihoods
given observed data. Multi-model ensembles

Key Parameters

5 blocks, 32-512 filters

Training Details

Adam, LR=0.001, 100

epochs
128 units, 0.3 dropout ~ RMSprop, LR=0.0005,
80 epochs
Max depth=30, min Bootstrap, OOB
samples=20 validation
16 residual blocks Alternating,

LR=0.0001, 150 epochs

include diverse architectures to capture different
aspects of climate variability. Monte Carlo
dropout implements uncertainty quantification
through stochastic forward passes, generating
probability distributions for predictions.

4. Results and Discussion

4.1 Model Performance Evaluation
Comprehensive  validation across multiple
geographic regions demonstrates the efficacy of
learning-based  downscaling  for
generating high-resolution atmospheric forecasts.
Temperature downscaling achieves consistently
strong performance across all tested architectures,
with correlation coefficients ranging from 0.82 to
0.91 and RMSE values between 1.2°C and 2.4°C
depending on season and region. The Super-
Resolution CNN exhibits superior performance
for temperature variables, effectively capturing
fine-scale spatial patterns associated with
topographic features, urban heat islands, and
proximity to water bodies. Table 3 summarizes
comparative performance metrics for different

machine
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model architectures across key climate variables.
Precipitation  downscaling presents greater
challenges due to the intermittent nature of
rainfall and high spatial variability. Generative
Adversarial Networks demonstrate the best
precipitation performance with correlation of 0.74
and RMSE of 8.2 mm, outperforming traditional

regression-based CNNs by generating sharper
spatial patterns. Ensemble methods consistently
outperform  individual models for both
temperature and precipitation, with ensemble
temperature correlation reaching 0.91 and
precipitation correlation improving to 0.76.

Table 3: Comparative Performance Metrics of Downscaling Models

Model Variable R (Correlation) RMSE MAE

SR-CNN Temperature 0.89 1.42°C 1.08°C
BiLSTM Temperature 0.86 1.78°C 1.34°C
Random Forest Temperature 0.85 1.91°C 1.45°C
GAN Precipitation 0.74 8.2 mm 4.7 mm
SR-CNN Precipitation 0.69 9.8 mm 5.3 mm
Ensemble Temperature 0.91 1.28°C 0.96°C
Ensemble Precipitation 0.76 7.6 mm 4.2 mm

Comprehensive  validation —across  multiple
geographic regions demonstrates the efficacy of
machine learning-based downscaling.
Temperature downscaling achieves correlation
coefficients ranging from 0.82 to 0.91, while

Temperature D aling Perfor e

0.95

Correlation Coefficient (R)

SR-CNN i Ensemble
Forest

Madel Type

Correlation Coefficient (R}

precipitation downscaling attains correlations of
0.69-0.76. Figure 3 compares performance metrics
for different model architectures, showing that
ensemble methods consistently outperform
individual models.

Precipitation D aling Performance

0.85

0.80 4 g

0.69

0.65

tion (R)
mmp

i

0.60

BiLSTM Random GAN Ensemble
Forest

Maodel Type

SR-CNN

Figure 3: Comparative Performance Metrics of Downscaling Models
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4.2 Contribution of Remote Sensing and GIS
Predictors

Feature importance analysis reveals substantial
contributions from remote sensing and GIS-
derived predictors, validating the multi-source
data integration approach. Elevation emerges as
the most influential static predictor for
temperature downscaling, accounting for 25-35%
of explained variance depending on terrain
complexity. Slope and aspect contribute
additional 812% of wvariance, capturing
microclimatic effects of solar radiation exposure
and cold air drainage. Land Surface Temperature
from MODIS provides critical calibration data,
enabling bias correction of GCM temperature
outputs and refinement of diurnal temperature
ranges. Vegetation indices demonstrate seasonal
importance, with NDVI contributing 15-20% of
explained variance during growing seasons when
evapotranspiration significantly influences surface
energy balance. For precipitation downscaling,

orographic predictors including
windward/leeward classification and precipitation
enhancement factors contribute 18-25% of
explained variance in mountainous regions. Land
cover classifications influence precipitation
patterns through surface roughness effects on
convection initiation. Distance to coastlines and
large water bodies serves as effective predictor for
maritime  influence gradients, particularly
important for coastal precipitation enhancement.

4.3 Feature Importance Analysis

Feature importance analysis reveals substantial
contributions from remote sensing and GIS-
derived predictors. Elevation emerges as the most
influential static predictor for temperature
downscaling, accounting for 25-35% of explained
variance. Figure 4 displays the relative importance
of different predictor variables for temperature
and precipitation downscaling, validating the
multi-source data integration approach.

Feature Importance for Climate Variable Downscaling

Geopotential
Height

Wind
Components

Specific
Humidity

Atmospheric
Pressure

Land Cover

Distance to
Coastline 8%

Predictor Variables

Slope & Aspect

NDVI

Land Surface
Temperature

Elevation

12%

16%

19%
20%

21%
17%
19%

20%
22%

18%

18%

28%

24%
B Temperature
B Precipitation

F T T

0 5 10

20 25 30 35

Relative Importance (%)

Figure 4: Feature Importance for Climate Variable Downscaling
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4.4 Spatial and Temporal Transferability
Spatial transferability experiments evaluate model
performance when trained on one region and

applied to spatially distant areas. Results
demonstrate moderate to good transferability for
temperature ~ models,  with  performance

degradation of 10-15% when transferring between
climatically similar regions. CNN architectures
show superior transferability compared to
traditional regression methods, likely due to their
ability to learn generalizable spatial feature
representations. Regions with similar topographic
complexity exhibit better transferability, while
transfers between climatically distinct regions
show  25-35%  performance  degradation.
Precipitation  transferability = proves  more
challenging, with performance reductions of 20-
30% even between similar regions, reflecting the
highly localized nature of precipitation processes.

Transfer learning approaches partially mitigate
limitations, with fine-tuning using limited local
data recovering 60-75% of performance achievable
with full local training. Temporal transferability
assessment whether relationships
learned during training remain valid for future
projections under climate change. Analysis of
pseudo-reality experiments reveals generally stable
performance for temperature with correlation
degradation less than 5% over 20-year projection
horizons.

Figure 5 demonstrates the spatial resolution
enhancement achieved through ML-based
downscaling compared to original GCM outputs
and traditional statistical methods. The ML
approach successfully generates realistic fine-scale
patterns at 1-4 km resolution while preserving
large-scale circulation features from the coarse-
resolution GCM inputs at 100 km resolution.

examines

Spatial Resolution Enhancement Through ML-Based Downscaling

GCM Output
{100 km resolution)

Grid Cells

Grid Cells

Traditional Downscaling
(25 km resolution)

Grid Cells

ML-Based Downscaling
(1-4 km resolution)

Grid Cells

Figure 5: Spatial Resolution Comparison Across Downscaling Approaches

Temporal analysis reveals seasonal variations in
downscaling performance, with better results
during stable weather conditions compared to
transition seasons. Figure 6 shows (top) monthly
performance variation and (bottom) extreme event

detection performance across different percentile
thresholds. The ensemble approach maintains
robust performance even for extreme events above
the 95th percentile.
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Figure 6: Temporal Performance Analysis and Extreme Event Detection

4.5 Extreme Event Representation

Accurate representation of extreme
constitutes a critical requirement for climate
adaptation  planning.  Quantile  analysis
demonstrates that machine learning models
successfully capture temperature extremes, with
95th and 99th percentile predictions achieving
correlations of 0.78-0.84, only slightly degraded

events

from mean value performance. GAN-based
approaches show particular  strength in
reproducing  extreme  precipitation  events,

generating realistic intensity distributions without
the systematic underestimation characteristic of
MSE-optimized models. Comparison with
observations indicates that ensemble methods
reproduce  observed frequency of heavy
precipitation events (>95th percentile) within 10-
15%, substantially better than individual models.
Heat wave representation benefits from CNN's
ability to capture spatial coherence of extreme

temperature events, reproducing observed spatial
extent and duration characteristics. Cold extremes
prove more challenging, particularly in regions
with complex orography where cold air pooling
creates highly localized patterns. Extreme wind
events show promising results when incorporating
wind-terrain  interaction  predictors,  with
correlations of 0.65-0.72 for 90th percentile wind
speeds.

4.6 Computational Efficiency

Computational efficiency represents a primary
advantage of machine learning downscaling over
dynamical approaches. Training deep learning
models requires substantial resources, with CNN
training on GPU clusters typically consuming 20-
40 hours for datasets spanning 30-50 years at daily
resolution. However, once trained, models
generate downscaled outputs extremely rapidly,
processing continental-scale domains (5-10 million
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grid points) in minutes on modest hardware. This
inference  efficiency enables near-realtime
generation of ensemble forecasts and facilitates
extensive sensitivity analyses impractical with
dynamical downscaling. Memory requirements
vary by architecture, with CNN models typically
requiring 2-8 GB of GPU memory for inference,
well within capabilities of consumer-grade
graphics cards. This accessibility democratizes
high-resolution climate information production,
enabling resource-constrained institutions to
generate downscaled projections. Model storage
requirements remain modest, with complete
trained models occupying 500 MB to 2 GB,
facilitating distribution and version control.

5. Conclusion

This research demonstrates that machine learning-
based climate model downscaling, integrated with
remote sensing and GIS data, offers a powerful
and computationally efficient approach for
generating high-resolution atmospheric forecasts.
The developed framework successfully addresses
longstanding challenges in climate downscaling
through systematic integration of multi-source
predictors, implementation of state-of-the-art deep
learning  architectures, and comprehensive
validation protocols. Results confirm that hybrid
approaches combining CNNs for spatial pattern
extraction, LSTMs for temporal dependency
modeling, and GANs for realistic distribution
generation  achieve  superior  performance
compared to traditional statistical methods or
individual architectures in isolation. Remote
sensing observations and GIS-derived predictors
contribute substantially to downscaling accuracy,
with elevation, land surface temperature,
vegetation indices, and terrain characteristics
accounting for 30-50% of explained variance
beyond that achievable with atmospheric
predictors alone. This multi-source integration
proves particularly valuable in complex terrain and
heterogeneous landscapes where local surface
characteristics dominate climate variability.

The framework achieves temperature downscaling
with correlations exceeding 0.85 and RMSE below
2°C across diverse geographic contexts, while
precipitation downscaling attains correlations of

0.72-0.76, representing substantial improvements
over coarse-resolution climate model outputs.
Ensemble  methods  consistently  enhance
performance and enable uncertainty
quantification, with multimodel ensembles
improving temperature correlation by 0.02-0.05
and precipitation correlation by 0.03-0.07 relative
to best individual models. Computational
efficiency stands as major advantage, with trained
models generating continental-scale downscaled
forecasts in minutes, enabling extensive ensemble
generation and scenario exploration impractical
with dynamical downscaling. This efficiency
democratizes access to high-resolution climate
information, facilitating applications in resource-
constrained settings and supporting diverse user
communities from agricultural planners to
infrastructure designers.

5.1 Implications for Climate Services

The operational viability demonstrated by this
framework holds significant implications for
climate services and decision support systems.
National meteorological services can implement
these approaches to generate high-resolution
climate projections for national and sub-national
planning, augmenting dynamical downscaling
efforts with computationally efficient statistical
alternatives. Agricultural applications benefit from
improved representation of frost events, growing
season characteristics, and precipitation reliability
at  field-relevant  scales. Water  resource
management gains from enhanced capability to
project streamflow, reservoir inflows, and drought
conditions through hydrological model coupling
with downscaled climate inputs. Urban planning
and infrastructure design can leverage high-
resolution temperature projections to inform heat
island mitigation strategies, building codes, and
energy system planning. The framework's extreme
event capabilities support risk assessment for
floods, droughts, and heat waves, informing
disaster preparedness and climate adaptation
investments. Renewable energy planning benefits
from improved wind and solar resource
characterization at installation-relevant scales.

https://thesesjournal.com

| Abbas et al., 2026 |

Page 419


https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

Volume 4, Issue 2, 2026

5.2 Future Research Directions

Several promising avenues warrant future
investigation. Physics-informed neural networks
that explicitly incorporate conservation laws and
known climate relationships could improve both
accuracy and  physical consistency  while
maintaining computational efficiency. Attention
mechanisms and transformer architectures
deserve exploration for their potential to capture
longrange spatial and temporal dependencies
more effectively than current approaches.
Improved uncertainty quantification methods,
including Bayesian deep learning and advanced
ensemble techniques, would enhance confidence
interval estimation and enable more robust risk
assessments. Expanding to additional climate
variables beyond temperature and precipitation,
including wind, humidity, solar radiation, and
derived indices such as reference
evapotranspiration, would increase framework
utility. Temporal super-resolution, generating sub-
daily outputs from daily climate model data,
would benefit applications requiring hourly
information. Multi-scale approaches that jointly
optimize across multiple spatial resolutions might
better capture cascade of climate processes from
synoptic to local scales. Transfer learning research
could further improve model transferability across
regions and climate zones, reducing data
requirements for new applications.

5.3 Concluding Remarks

Machine learningbased climate downscaling
represents a mature and operationally viable
approach  for  generating  high-resolution
atmospheric forecasts from coarse global climate
models. The integration of remote sensing
observations and GIS data substantially enhances
performance by incorporating critical surface
characteristics not resolved in atmospheric
models. While limitations remain, particularly
regarding long-term stationarity assumptions and
extreme event representation in some contexts,
the demonstrated accuracy, computational
efficiency, and practical applicability position
these methods as essential components of modern
climate services. As climate change accelerates and
demands for actionable climate information

intensify, machine learning downscaling offers
scalable solutions for bridging the gap between
global model capabilities and local decision-
making needs. The framework developed in this
research provides a comprehensive foundation for
operational implementation, while identified
future research directions offer pathways for
continued advancement. By combining the
physical understanding embedded in process-
based models with the pattern recognition
capabilities of machine learning, and by
systematically leveraging the wealth of Earth
observation data now available, the climate science
community can deliver the high-resolution,
reliable climate information needed to navigate an
uncertain future.
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