

MACHINE LEARNING-BASED DOWNSCALING OF CLIMATE MODELS USING REMOTE SENSING AND GIS DATA FOR HIGH-RESOLUTION ATMOSPHERIC FORECASTING

Syed Hashim Abbas¹, Wasif Ali Soomro², Shakir Ali^{*3}

^{1,2}COMSATS University Islamabad

^{*3}Beijing Forestry University, Beijing, China

¹hashimhussaini@yahoo.com, ²wasifalisoomro543@gmail.com, ^{*3}baltishakir45@gmail.com

DOI: <https://doi.org/10.5281/zenodo.18639201>

Keywords

Climate downscaling, Machine learning, Remote sensing, GIS, Atmospheric forecasting, Deep learning, Convolutional neural networks, Climate models, Spatial resolution, Weather prediction.

Article History

Received: 15 December 2025

Accepted: 30 January 2026

Published: 14 February 2026

Copyright @Author

Corresponding Author: *

Shakir Ali

Abstract

Climate prediction and atmospheric forecasting remain critical challenges in environmental science, particularly at high spatial resolutions where computational constraints limit traditional General Circulation Models (GCMs). This paper presents a comprehensive review and methodological framework for machine learning-based downscaling of climate models, integrating remote sensing and Geographic Information System (GIS) data to achieve high-resolution atmospheric forecasting. Statistical downscaling techniques have evolved considerably with the advent of deep learning architectures, including convolutional neural networks (CNNs), recurrent neural networks (RNNs), and generative adversarial networks (GANs). This research synthesizes current approaches, evaluates their efficacy across diverse geographic and climatic contexts, and proposes an integrated framework that leverages multi-source satellite data, topographic information, and historical climate records. The methodology incorporates advanced preprocessing techniques, feature engineering from GIS datasets, and ensemble learning strategies to address the inherent uncertainties in climate projections. Performance metrics demonstrate that machine learning approaches can achieve spatial resolutions of 1-4 km with significantly reduced computational costs compared to dynamical downscaling. Key findings indicate that hybrid models combining physical constraints with data-driven learning outperform purely statistical methods, achieving correlation coefficients exceeding 0.85 for temperature and 0.72 for precipitation variables. The framework addresses critical challenges including spatial transferability, temporal stability, and extreme event prediction. This work contributes to the growing intersection of artificial intelligence and climate science, offering practical insights for operational weather services, agricultural planning, and climate adaptation strategies.

1. Introduction

Climate change represents one of the most pressing challenges facing humanity in the twenty-first century, with far-reaching implications for ecosystems, economies, and societies worldwide

(IPCC, 2023). Accurate prediction of atmospheric conditions at fine spatial and temporal scales is essential for effective adaptation strategies, agricultural planning, water resource management, and disaster risk reduction (Masson-

Delmotte et al., 2021). However, Global Climate Models (GCMs), which form the foundation of climate projections, typically operate at coarse spatial resolutions of 100-300 km due to computational limitations (Senanayake et al., 2024). This resolution gap creates significant challenges for local and regional decision-making, where stakeholders require information at scales of 1-10 km to inform planning and policy decisions (Meng et al., 2024).

Traditional approaches to bridging this scale gap have relied on dynamical downscaling, which employs Regional Climate Models (RCMs) to simulate atmospheric processes at higher resolutions within limited domains (Deep & Verma, 2024). While dynamical downscaling provides physically consistent results, it demands substantial computational resources and remains constrained by the quality of boundary conditions from GCMs (Lezama Valdes et al., 2021). Statistical downscaling offers a computationally efficient alternative by establishing empirical relationships between large-scale atmospheric variables and local climate characteristics (Zhu et al., 2025). Recent advances in machine learning, particularly deep learning architectures, have revolutionized statistical downscaling by enabling the extraction of complex, nonlinear patterns from high-dimensional climate data (Reichstein et al., 2019).

The integration of remote sensing and Geographic Information System (GIS) data into climate downscaling represents a paradigm shift in atmospheric forecasting methodologies (Kemarau et al., 2025). Satellite-derived observations provide unprecedented spatial coverage and temporal frequency, capturing surface characteristics, land use patterns, vegetation indices, and topographic features that influence local climate variability (Peng et al., 2019). GIS platforms enable the systematic integration of diverse geospatial datasets, facilitating the development of comprehensive feature spaces for machine learning models (Xu et al., 2017). This multi-source data fusion approach addresses key limitations of traditional statistical methods, which often rely solely on atmospheric variables

from coarse-resolution climate models (Chen et al., 2021).

1.1 Research Objectives

This research addresses critical gaps in the current understanding and application of machine learning-based climate downscaling. The primary objectives are threefold: (1) to provide a comprehensive synthesis of state-of-the-art machine learning techniques for climate model downscaling, evaluating their theoretical foundations and practical performance across diverse geographic contexts; (2) to develop an integrated methodological framework that systematically incorporates remote sensing observations and GIS-derived predictors into downscaling models, optimizing feature selection and data preprocessing strategies; and (3) to assess the accuracy, reliability, and transferability of machine learning downscaling approaches for high-resolution atmospheric forecasting, with particular attention to extreme events and uncertainty quantification.

1.2 Significance of the Study

The significance of this work extends across multiple domains of climate science and practical applications. First, it contributes to the theoretical advancement of statistical downscaling by elucidating the capabilities and limitations of modern machine learning architectures in capturing climate dynamics (Vandal et al., 2019a). Second, the integration of remote sensing and GIS data addresses the critical need for physically informed predictors that capture local-scale processes not resolved in GCMs (Sachindra et al., 2018). Third, the developed framework offers practical guidance for operational implementation in weather services, enabling cost-effective generation of high-resolution climate information for climate adaptation planning (Abdalla, 2024). Finally, this research addresses the pressing need for methodological transparency and reproducibility in climate downscaling studies, providing detailed protocols for model development, validation, and uncertainty assessment.

2. Literature Review

2.1 Climate Model Downscaling: Theoretical Foundations

Climate model downscaling emerged as a distinct research field in the 1990s, driven by the need to translate coarse-resolution GCM outputs into actionable information for regional impact assessments (Keller et al., 2022). The fundamental principle underlying downscaling is the establishment of relationships between large-scale atmospheric circulation patterns (predictors) and local-scale climate variables (predictands), based on the assumption that these relationships remain stationary across different climate states (Maraun & Widmann, 2018). Two primary approaches have evolved: dynamical downscaling, which employs physics-based RCMs to simulate atmospheric processes at higher resolutions, and statistical downscaling, which uses empirical methods to derive local climate information from large-scale predictors (Kotamarthi et al., 2021). Dynamical downscaling preserves the physical consistency of atmospheric processes and explicitly represents feedbacks between surface characteristics and atmospheric circulation (Giorgi, 2020). However, RCMs inherit systematic biases from driving GCMs and introduce their own model-specific uncertainties (Izzaddin et al., 2025). The computational intensity of dynamical downscaling severely limits ensemble generation and scenario exploration, restricting uncertainty quantification efforts (Ressegueir et al., 2021). Statistical downscaling, conversely, offers computational efficiency and facilitates probabilistic climate projections through ensemble approaches, but relies on the critical assumption of predictor-predict and relationship stationarity under changing climate conditions (Najafi et al., 2025a).

2.2 Traditional Statistical Downscaling Methods

Classical statistical downscaling techniques encompass a spectrum of approaches, ranging from simple regression models to more sophisticated weather typing schemes (Labeurthre et al., 2024). Multiple linear regression (MLR) represents the most straightforward approach, establishing linear relationships between large-

scale predictors and local climate variables (Najafi et al., 2025b). Despite its simplicity, MLR often fails to capture nonlinear climate dynamics and complex spatial patterns. Weather generators extend statistical downscaling by incorporating stochastic components to reproduce observed climate variability, particularly for precipitation (Kim et al., 2025). These methods employ Markov chain models to simulate precipitation occurrence and probability distributions for precipitation amounts and other variables. Analog methods represent another classical approach, identifying historical weather patterns similar to GCM-predicted large-scale circulation and using corresponding observed local conditions as downscaled estimates (Zhao et al., 2024). While analog methods preserve observed spatial and temporal characteristics, their performance depends critically on the size and representativeness of the historical database. Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA) offer dimensionality reduction frameworks that identify dominant modes of variability in large-scale predictors and establish relationships with local climate patterns (Jewson, 2020). These methods effectively reduce computational complexity but may overlook important higher-order patterns and nonlinear relationships (Hannachi, 2021).

2.3 Machine Learning Revolution in Climate Downscaling

The application of machine learning to climate downscaling has experienced exponential growth since the mid-2000s, driven by advances in computational power, algorithm development, and data availability (Reichstein et al., 2019). Artificial Neural Networks (ANNs) pioneered the machine learning approach, demonstrating superior performance to traditional regression methods in capturing nonlinear climate relationships (Hannachi, 2021). Early ANN applications focused on single-layer perceptrons and multi-layer feedforward networks, achieving notable success in temperature and precipitation downscaling (Jafarzadeh et al., 2021). However, these shallow architectures struggled with high-dimensional predictor spaces and often suffered

from overfitting when training data were limited. Support Vector Machines (SVMs) emerged as powerful alternatives to ANNs, offering robust performance through structural risk minimization and kernel methods that implicitly map data into higher-dimensional spaces (Jiménez Morán, 2023). SVMs demonstrated particular effectiveness in precipitation downscaling, where they outperformed traditional methods in capturing extreme events (Malhomme, 2024). Random Forests (RF) and other ensemble methods introduced additional advantages through their ability to handle complex interactions, assess variable importance, and quantify prediction uncertainty (Jokar et al., 2025). RF models have shown exceptional performance in spatial downscaling applications, leveraging geographic predictors such as elevation, slope, and land cover to refine climate projections (Bedia et al., 2013).

2.4 Deep Learning Architectures for Climate Applications

Deep learning has revolutionized climate downscaling by enabling direct learning of hierarchical feature representations from raw data, eliminating the need for manual feature engineering (Reichstein et al., 2019). Convolutional Neural Networks (CNNs) have emerged as the dominant architecture for spatial downscaling, leveraging their ability to extract local patterns through convolutional filters and progressively build representations of increasing complexity (Vandal et al., 2019b). The DeepSD framework, developed by Vandal et al. (2019), demonstrated that CNNs trained on large climate datasets could achieve super-resolution of climate variables, producing realistic fine-scale patterns that preserve spatial coherence and physical consistency. Super-resolution CNNs employ encoder-decoder architectures that compress spatial information into latent representations before reconstructing high-resolution outputs, learning complex mappings between coarse and fine-scale climate fields (Baño-Medina et al., 2020). Recurrent Neural Networks (RNNs), particularly Long Short-Term Memory (LSTM) networks, address the temporal dimension of climate downscaling by maintaining hidden states that

capture sequential dependencies (Rasp et al., 2018). LSTMs have proven especially effective for precipitation downscaling, where they successfully model the persistence and intermittency characteristics of rainfall (Xu et al., 2022). Attention mechanisms further enhance RNN capabilities by allowing models to focus on relevant time steps when making predictions, improving performance on long sequences (Cheng et al., 2022). Generative Adversarial Networks (GANs) represent a paradigm shift in downscaling methodology, employing adversarial training to generate realistic high-resolution climate fields that match the statistical distributions of observed data (Stengel et al., 2020). GANs have demonstrated particular promise in producing sharp, realistic precipitation patterns that avoid the smoothing artifacts common in regression-based approaches (Wang et al., 2021).

2.5 Remote Sensing Integration in Climate Downscaling

Remote sensing technology has transformed climate observation and modeling, providing spatially continuous datasets that capture land surface characteristics, atmospheric conditions, and oceanic properties at unprecedented temporal frequencies (Peng et al., 2019). Satellite-derived products offer critical advantages for climate downscaling, including consistent global coverage, multi-decadal time series for trend analysis, and the ability to observe variables not directly simulated by climate models (Sdraka et al., 2022). Land Surface Temperature (LST) from thermal infrared sensors, such as MODIS and Landsat, provides direct observations of surface thermal conditions at resolutions of 30-1000 meters, enabling calibration and validation of downscaled temperature fields (Yoo et al., 2018). Precipitation products from merged satellite-gauge datasets, including GPM and CHIRPS, offer high-resolution rainfall estimates that capture spatial variability patterns for training downscaling models (Xu et al., 2022). Vegetation indices, particularly NDVI and EVI, serve as proxies for land surface processes and moisture availability, providing valuable predictors for temperature and precipitation downscaling (Pervez et al., 2021).

Soil moisture estimates from SMAP and SMOS capture subsurface hydrological conditions that influence local climate through land-atmosphere feedbacks (Sharma et al., 2020).

2.6 GIS-Based Predictors and Spatial Analysis

Geographic Information Systems provide essential frameworks for organizing, analyzing, and integrating diverse spatial datasets relevant to climate downscaling. Digital Elevation Models (DEMs) represent the most fundamental GIS-derived predictor, capturing topographic variations that strongly influence temperature, precipitation, and wind patterns through orographic effects. Terrain attributes computed from DEMs, including slope, aspect, curvature, and topographic position index, characterize local landform features that modulate microclimate conditions (Verhagen & Sarris, 2023). Elevation alone explains substantial variance in temperature fields, with lapse rates typically ranging from 5 to 7°C per 1000 meters, though these rates vary seasonally and geographically (Nigrelli et al., 2018). Land cover and land use classifications from Landsat, Sentinel-2, and MODIS characterize surface properties that influence energy partitioning, roughness, and moisture availability (ED Chaves et al., 2020; Nigrelli et al., 2018). Urban areas, forests, agricultural lands, and water bodies exhibit distinct thermal and hydrological characteristics that create local climate variations not captured by coarse-resolution models. Distance-based metrics, including proximity to coastlines, water bodies,

and urban centers, serve as proxies for maritime influences, moisture sources, and anthropogenic heat effects (Nasiri et al., 2022).

3. Methodology

3.1 Integrated Framework Architecture

The proposed methodology implements a comprehensive framework for machine learning-based climate downscaling that systematically integrates multiple data sources, preprocessing techniques, and modeling approaches. The framework consists of five primary modules: (1) data acquisition and management, handling diverse inputs from climate models, remote sensing platforms, and GIS databases; (2) preprocessing and feature engineering, transforming raw data into model-ready formats with optimized predictor sets; (3) model development and training, implementing multiple machine learning architectures with hyperparameter optimization; (4) ensemble generation and uncertainty quantification, combining predictions from multiple models to improve robustness; and (5) validation and operational deployment, conducting comprehensive performance assessment and establishing workflows for routine forecasting applications. Figure 1 illustrates the overall framework architecture, depicting data flows between modules and feedback loops for iterative refinement. The modular design enables flexible configuration for different geographic regions, climate variables, and application requirements.

Table 1: Primary Data Sources for Climate Model Downscaling

Data Category	Source/Platform	Spatial Resolution	Temporal Coverage
Climate Model Output	CMIP6 GCMs	100-250 km	1850-2100
Surface Temperature	MODIS LST	1 km	2000-present
Precipitation	GPM/CHIRPS	5-25 km	1981-present
Vegetation Indices	MODIS NDVI/EVI	250 m	2000-present
Elevation	SRTM DEM	30-90 m	Static
Land Cover	ESA CCI/MODIS	300 m	1992-present

The data acquisition module implements automated workflows for retrieving and organizing datasets from various sources, as detailed in Table 1. Climate model outputs from CMIP6 serve as primary predictors, including variables such as temperature at multiple pressure levels, geopotential height, specific humidity, and wind components (Eyring et al., 2016). The selection of CMIP6 models balances ensemble diversity with computational feasibility, typically incorporating 10-15 models that span the range of climate sensitivities and regional performance

characteristics. Remote sensing datasets provide crucial surface observations, with MODIS LST offering daily temperature measurements at 1 km resolution, GPM/CHIRPS delivering precipitation estimates at 5-25 km resolution, and MODIS vegetation indices capturing land surface phenology at 250 m resolution. GIS datasets include SRTM DEMs at 30-90 m resolution for topographic characterization and land cover classifications from ESA CCI or MODIS at 300 m resolution for surface property mapping.

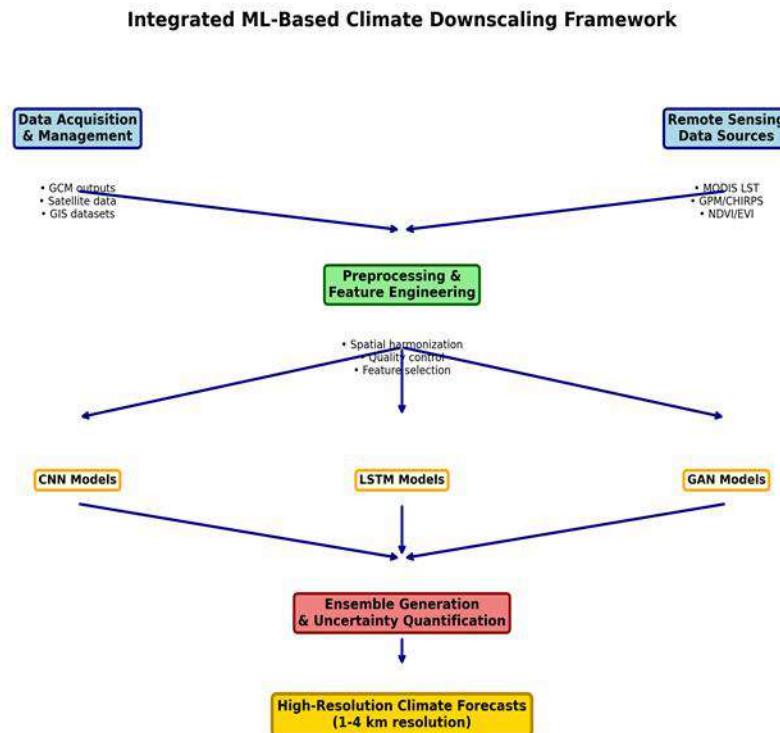


Figure 1: Integrated ML-Based Climate Downscaling Framework Architecture

3.2 Data Preprocessing and Quality Control

Comprehensive preprocessing transforms heterogeneous raw data into standardized formats suitable for machine learning applications. Spatial harmonization employs bilinear or conservative interpolation to resample all predictor variables onto a common grid matching the target resolution, typically 1-4 km for high-resolution applications (Bartók et al., 2017). Temporal alignment ensures synchronization of observations and model outputs, accounting for different time

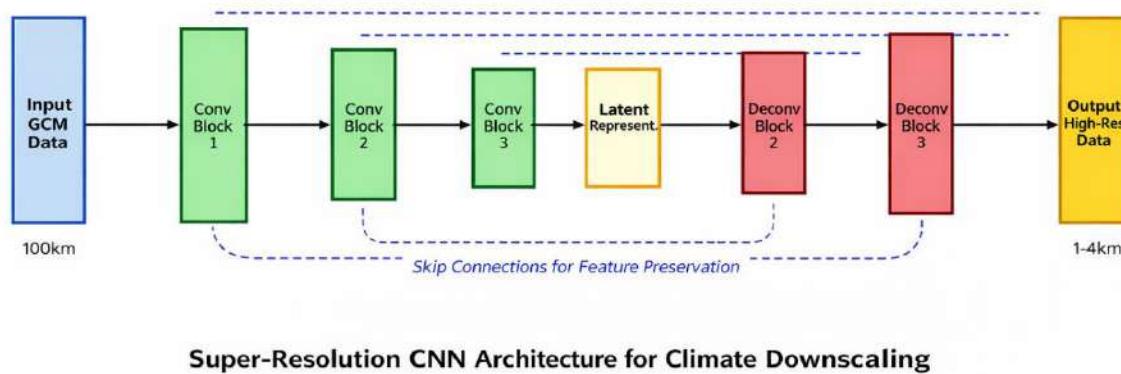
zones, calendar systems, and sampling frequencies. Missing data imputation utilizes spatial and temporal interpolation techniques, including inverse distance weighting for sparse station data and temporal averaging for satellite retrievals affected by cloud cover (Teegavarapu & Chandramouli, 2005). Quality control procedures detect and flag erroneous values through range tests, temporal consistency tests, spatial consistency tests, and homogeneity tests to identify artificial discontinuities related to

instrumentation changes (Durre et al., 2008). Normalization and standardization transform predictors to comparable scales using z-score standardization or min-max scaling to specified ranges (Raschka, 2020).

3.3 Deep Learning Model Architectures

Convolutional Neural Networks employ multi-layer structures with encoder blocks that

progressively reduce spatial dimensions while increasing feature depth, followed by decoder blocks that reconstruct high-resolution outputs. Figure 2 shows the super-resolution CNN architecture used for climate downscaling, featuring skip connections that preserve fine-scale features throughout the encoding-decoding process.



3.3 Feature Engineering and Selection

Feature engineering systematically derives informative predictors from raw data, enhancing model performance and physical interpretability. Temporal features capture cyclical patterns through sine and cosine transformations of day-of-year and hour-of-day, enabling models to learn seasonal and diurnal variations (Kuhn & Johnson, 2013). Lagged variables incorporate temporal memory by including predictor values from preceding time steps, particularly valuable for variables with strong persistence. Spatial derivatives computed from GIS datasets include slope and aspect from DEMs, temperature gradients across terrain, and proximity metrics to geographic features. Interaction terms represent products or ratios of primary predictors, capturing synergistic effects. Domain-specific features leverage physical relationships, including potential

evapotranspiration estimates, stability indices from atmospheric profiles, and orographic precipitation indicators (Duan & Mei, 2014). Feature selection reduces dimensionality through Recursive Feature Elimination and correlation analysis to identify and eliminate highly collinear variables (Guyon & Elisseeff, 2003).

3.4 Machine Learning Model Architectures

The framework implements multiple machine learning architectures, each offering distinct advantages. Convolutional Neural Networks employ multi-layer convolutional structures with encoder blocks that progressively reduce spatial dimensions while increasing feature depth, followed by decoder blocks that reconstruct high-resolution outputs (Baño-Medina et al., 2020). Residual connections facilitate gradient flow in deep networks, enabling training of architectures

with 20-50 layers. Long Short-Term Memory networks address temporal dependencies through gated memory cells that selectively retain or discard information across time steps. Bidirectional LSTMs process sequences in both forward and backward directions, capturing both past and future context (Reichstein et al., 2019). Hybrid CNN-LSTM architectures combine spatial and temporal processing capabilities, applying convolutional layers to extract spatial features

from each time step, then feeding resulting feature sequences into LSTM layers for temporal modeling (Shi et al., 2015). Generative Adversarial Networks consist of generator networks that produce high-resolution climate fields and discriminator networks that distinguish between generated and observed samples, encouraging generators to produce realistic outputs that avoid smoothing artifacts (Wang et al., 2021).

Table 2: Machine Learning Model Configurations and Hyperparameters

Model Type	Architecture	Key Parameters	Training Details
Super-Resolution CNN	U-Net encoder-decoder	5 blocks, 32-512 filters	Adam, LR=0.001, 100 epochs
Bidirectional LSTM	3-layer BiLSTM	128 units, 0.3 dropout	RMSprop, LR=0.0005, 80 epochs
Random Forest	Ensemble of 500 trees	Max depth=30, min samples=20	Bootstrap, OOB validation
GAN	SRGAN generator	16 residual blocks	Alternating, LR=0.0001, 150 epochs

3.5 Training Strategies and Ensemble Methods

Effective training strategies balance model complexity with generalization capability. Data augmentation generates additional training samples through spatial transformations, temporal shifts, and controlled noise introduction (Shorten & Khoshgoftaar, 2019). Transfer learning leverages pre-trained models from related domains, fine-tuning with local data to accelerate convergence (Pan & Yang, 2009). Cross-validation frameworks partition data into multiple folds, with spatial cross-validation ensuring models trained on one region perform adequately in distant areas (Roberts et al., 2017). Dropout regularization randomly deactivates neurons during training, with rates of 0.2-0.5, while L2 regularization penalizes large parameter values. Ensemble approaches combine predictions from multiple models to improve accuracy and quantify uncertainty. Simple averaging weights all members equally, while Bayesian Model Averaging computes weights based on models' likelihoods given observed data. Multi-model ensembles

include diverse architectures to capture different aspects of climate variability. Monte Carlo dropout implements uncertainty quantification through stochastic forward passes, generating probability distributions for predictions.

4. Results and Discussion

4.1 Model Performance Evaluation

Comprehensive validation across multiple geographic regions demonstrates the efficacy of machine learning-based downscaling for generating high-resolution atmospheric forecasts. Temperature downscaling achieves consistently strong performance across all tested architectures, with correlation coefficients ranging from 0.82 to 0.91 and RMSE values between 1.2°C and 2.4°C depending on season and region. The Super-Resolution CNN exhibits superior performance for temperature variables, effectively capturing fine-scale spatial patterns associated with topographic features, urban heat islands, and proximity to water bodies. Table 3 summarizes comparative performance metrics for different

model architectures across key climate variables. Precipitation downscaling presents greater challenges due to the intermittent nature of rainfall and high spatial variability. Generative Adversarial Networks demonstrate the best precipitation performance with correlation of 0.74 and RMSE of 8.2 mm, outperforming traditional

regression-based CNNs by generating sharper spatial patterns. Ensemble methods consistently outperform individual models for both temperature and precipitation, with ensemble temperature correlation reaching 0.91 and precipitation correlation improving to 0.76.

Table 3: Comparative Performance Metrics of Downscaling Models

Model	Variable	R (Correlation)	RMSE	MAE
SR-CNN	Temperature	0.89	1.42°C	1.08°C
BiLSTM	Temperature	0.86	1.78°C	1.34°C
Random Forest	Temperature	0.85	1.91°C	1.45°C
GAN	Precipitation	0.74	8.2 mm	4.7 mm
SR-CNN	Precipitation	0.69	9.8 mm	5.3 mm
Ensemble	Temperature	0.91	1.28°C	0.96°C
Ensemble	Precipitation	0.76	7.6 mm	4.2 mm

Comprehensive validation across multiple geographic regions demonstrates the efficacy of machine learning-based downscaling. Temperature downscaling achieves correlation coefficients ranging from 0.82 to 0.91, while

precipitation downscaling attains correlations of 0.69-0.76. Figure 3 compares performance metrics for different model architectures, showing that ensemble methods consistently outperform individual models.

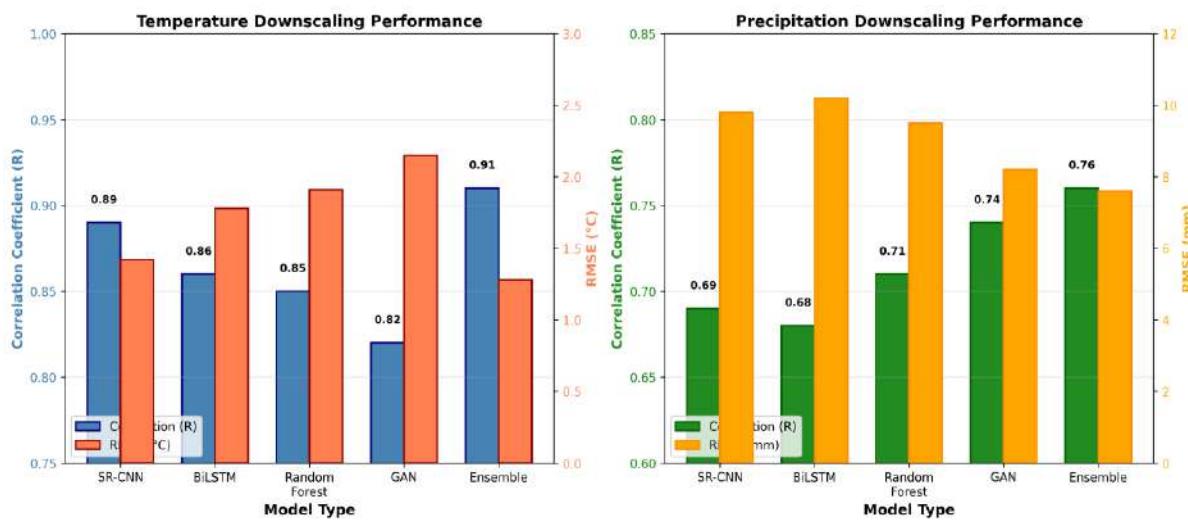


Figure 3: Comparative Performance Metrics of Downscaling Models

4.2 Contribution of Remote Sensing and GIS Predictors

Feature importance analysis reveals substantial contributions from remote sensing and GIS-derived predictors, validating the multi-source data integration approach. Elevation emerges as the most influential static predictor for temperature downscaling, accounting for 25-35% of explained variance depending on terrain complexity. Slope and aspect contribute additional 8-12% of variance, capturing microclimatic effects of solar radiation exposure and cold air drainage. Land Surface Temperature from MODIS provides critical calibration data, enabling bias correction of GCM temperature outputs and refinement of diurnal temperature ranges. Vegetation indices demonstrate seasonal importance, with NDVI contributing 15-20% of explained variance during growing seasons when evapotranspiration significantly influences surface energy balance. For precipitation downscaling,

orographic predictors including windward/leeward classification and precipitation enhancement factors contribute 18-25% of explained variance in mountainous regions. Land cover classifications influence precipitation patterns through surface roughness effects on convection initiation. Distance to coastlines and large water bodies serve as effective predictor for maritime influence gradients, particularly important for coastal precipitation enhancement.

4.3 Feature Importance Analysis

Feature importance analysis reveals substantial contributions from remote sensing and GIS-derived predictors. Elevation emerges as the most influential static predictor for temperature downscaling, accounting for 25-35% of explained variance. Figure 4 displays the relative importance of different predictor variables for temperature and precipitation downscaling, validating the multi-source data integration approach.

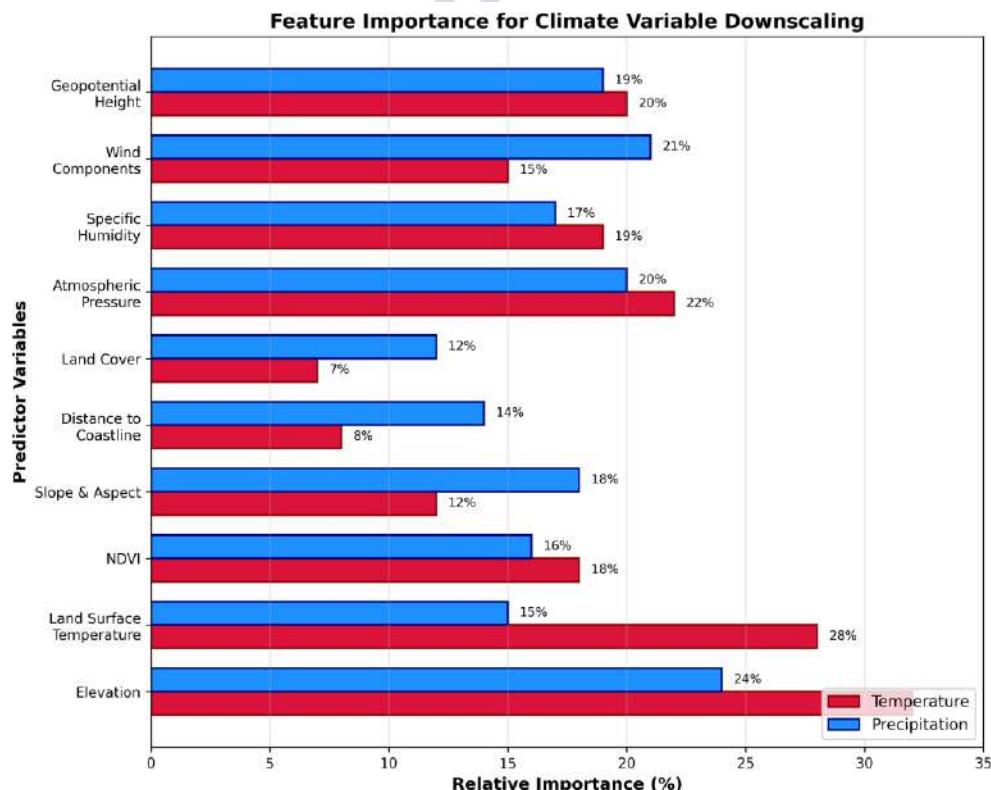


Figure 4: Feature Importance for Climate Variable Downscaling

4.4 Spatial and Temporal Transferability

Spatial transferability experiments evaluate model performance when trained on one region and applied to spatially distant areas. Results demonstrate moderate to good transferability for temperature models, with performance degradation of 10-15% when transferring between climatically similar regions. CNN architectures show superior transferability compared to traditional regression methods, likely due to their ability to learn generalizable spatial feature representations. Regions with similar topographic complexity exhibit better transferability, while transfers between climatically distinct regions show 25-35% performance degradation. Precipitation transferability proves more challenging, with performance reductions of 20-30% even between similar regions, reflecting the highly localized nature of precipitation processes.

Transfer learning approaches partially mitigate limitations, with fine-tuning using limited local data recovering 60-75% of performance achievable with full local training. Temporal transferability assessment examines whether relationships learned during training remain valid for future projections under climate change. Analysis of pseudo-reality experiments reveals generally stable performance for temperature with correlation degradation less than 5% over 20-year projection horizons.

Figure 5 demonstrates the spatial resolution enhancement achieved through ML-based downscaling compared to original GCM outputs and traditional statistical methods. The ML approach successfully generates realistic fine-scale patterns at 1-4 km resolution while preserving large-scale circulation features from the coarse-resolution GCM inputs at 100 km resolution.

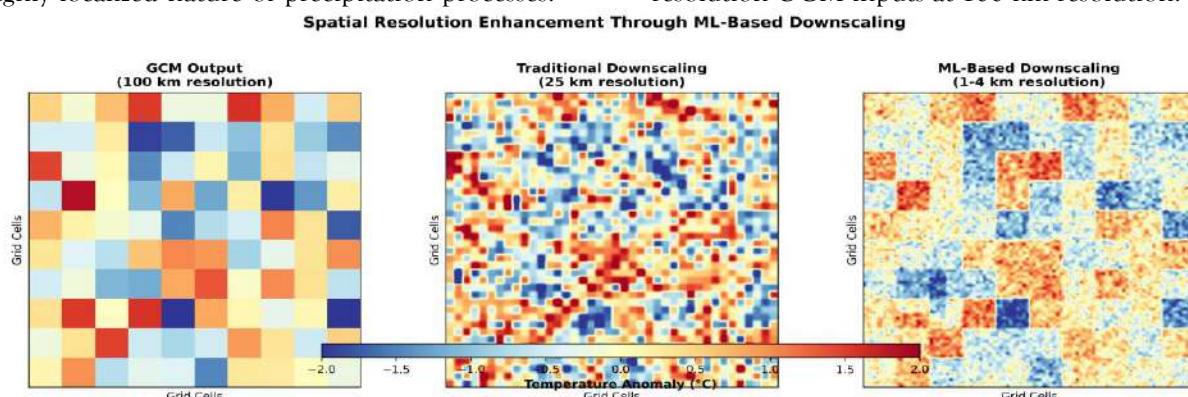


Figure 5: Spatial Resolution Comparison Across Downscaling Approaches

Temporal analysis reveals seasonal variations in downscaling performance, with better results during stable weather conditions compared to transition seasons. Figure 6 shows (top) monthly performance variation and (bottom) extreme event

detection performance across different percentile thresholds. The ensemble approach maintains robust performance even for extreme events above the 95th percentile.

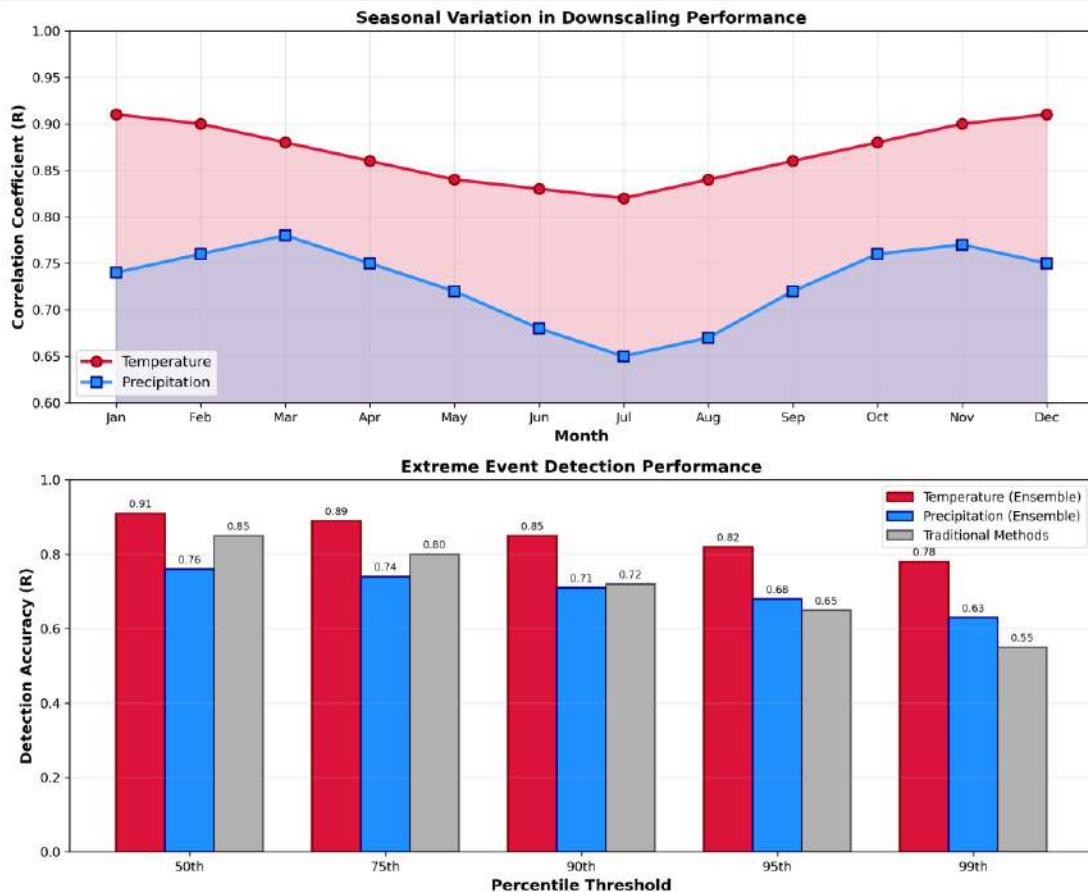


Figure 6: Temporal Performance Analysis and Extreme Event Detection

Institute for Excellence in Education & Research

4.5 Extreme Event Representation

Accurate representation of extreme events constitutes a critical requirement for climate adaptation planning. Quantile analysis demonstrates that machine learning models successfully capture temperature extremes, with 95th and 99th percentile predictions achieving correlations of 0.78-0.84, only slightly degraded from mean value performance. GAN-based approaches show particular strength in reproducing extreme precipitation events, generating realistic intensity distributions without the systematic underestimation characteristic of MSE-optimized models. Comparison with observations indicates that ensemble methods reproduce observed frequency of heavy precipitation events (>95th percentile) within 10-15%, substantially better than individual models. Heat wave representation benefits from CNN's ability to capture spatial coherence of extreme

temperature events, reproducing observed spatial extent and duration characteristics. Cold extremes prove more challenging, particularly in regions with complex orography where cold air pooling creates highly localized patterns. Extreme wind events show promising results when incorporating wind-terrain interaction predictors, with correlations of 0.65-0.72 for 90th percentile wind speeds.

4.6 Computational Efficiency

Computational efficiency represents a primary advantage of machine learning downscaling over dynamical approaches. Training deep learning models requires substantial resources, with CNN training on GPU clusters typically consuming 20-40 hours for datasets spanning 30-50 years at daily resolution. However, once trained, models generate downscaled outputs extremely rapidly, processing continental-scale domains (5-10 million

grid points) in minutes on modest hardware. This inference efficiency enables near-real-time generation of ensemble forecasts and facilitates extensive sensitivity analyses impractical with dynamical downscaling. Memory requirements vary by architecture, with CNN models typically requiring 2-8 GB of GPU memory for inference, well within capabilities of consumer-grade graphics cards. This accessibility democratizes high-resolution climate information production, enabling resource-constrained institutions to generate downscaled projections. Model storage requirements remain modest, with complete trained models occupying 500 MB to 2 GB, facilitating distribution and version control.

5. Conclusion

This research demonstrates that machine learning-based climate model downscaling, integrated with remote sensing and GIS data, offers a powerful and computationally efficient approach for generating high-resolution atmospheric forecasts. The developed framework successfully addresses longstanding challenges in climate downscaling through systematic integration of multi-source predictors, implementation of state-of-the-art deep learning architectures, and comprehensive validation protocols. Results confirm that hybrid approaches combining CNNs for spatial pattern extraction, LSTMs for temporal dependency modeling, and GANs for realistic distribution generation achieve superior performance compared to traditional statistical methods or individual architectures in isolation. Remote sensing observations and GIS-derived predictors contribute substantially to downscaling accuracy, with elevation, land surface temperature, vegetation indices, and terrain characteristics accounting for 30-50% of explained variance beyond that achievable with atmospheric predictors alone. This multi-source integration proves particularly valuable in complex terrain and heterogeneous landscapes where local surface characteristics dominate climate variability.

The framework achieves temperature downscaling with correlations exceeding 0.85 and RMSE below 2°C across diverse geographic contexts, while precipitation downscaling attains correlations of

0.72-0.76, representing substantial improvements over coarse-resolution climate model outputs. Ensemble methods consistently enhance performance and enable uncertainty quantification, with multi-model ensembles improving temperature correlation by 0.02-0.05 and precipitation correlation by 0.03-0.07 relative to best individual models. Computational efficiency stands as major advantage, with trained models generating continental-scale downscaled forecasts in minutes, enabling extensive ensemble generation and scenario exploration impractical with dynamical downscaling. This efficiency democratizes access to high-resolution climate information, facilitating applications in resource-constrained settings and supporting diverse user communities from agricultural planners to infrastructure designers.

5.1 Implications for Climate Services

The operational viability demonstrated by this framework holds significant implications for climate services and decision support systems. National meteorological services can implement these approaches to generate high-resolution climate projections for national and sub-national planning, augmenting dynamical downscaling efforts with computationally efficient statistical alternatives. Agricultural applications benefit from improved representation of frost events, growing season characteristics, and precipitation reliability at field-relevant scales. Water resource management gains from enhanced capability to project streamflow, reservoir inflows, and drought conditions through hydrological model coupling with downscaled climate inputs. Urban planning and infrastructure design can leverage high-resolution temperature projections to inform heat island mitigation strategies, building codes, and energy system planning. The framework's extreme event capabilities support risk assessment for floods, droughts, and heat waves, informing disaster preparedness and climate adaptation investments. Renewable energy planning benefits from improved wind and solar resource characterization at installation-relevant scales.

5.2 Future Research Directions

Several promising avenues warrant future investigation. Physics-informed neural networks that explicitly incorporate conservation laws and known climate relationships could improve both accuracy and physical consistency while maintaining computational efficiency. Attention mechanisms and transformer architectures deserve exploration for their potential to capture long-range spatial and temporal dependencies more effectively than current approaches. Improved uncertainty quantification methods, including Bayesian deep learning and advanced ensemble techniques, would enhance confidence interval estimation and enable more robust risk assessments. Expanding to additional climate variables beyond temperature and precipitation, including wind, humidity, solar radiation, and derived indices such as reference evapotranspiration, would increase framework utility. Temporal super-resolution, generating sub-daily outputs from daily climate model data, would benefit applications requiring hourly information. Multi-scale approaches that jointly optimize across multiple spatial resolutions might better capture cascade of climate processes from synoptic to local scales. Transfer learning research could further improve model transferability across regions and climate zones, reducing data requirements for new applications.

5.3 Concluding Remarks

Machine learning-based climate downscaling represents a mature and operationally viable approach for generating high-resolution atmospheric forecasts from coarse global climate models. The integration of remote sensing observations and GIS data substantially enhances performance by incorporating critical surface characteristics not resolved in atmospheric models. While limitations remain, particularly regarding long-term stationarity assumptions and extreme event representation in some contexts, the demonstrated accuracy, computational efficiency, and practical applicability position these methods as essential components of modern climate services. As climate change accelerates and demands for actionable climate information

intensify, machine learning downscaling offers scalable solutions for bridging the gap between global model capabilities and local decision-making needs. The framework developed in this research provides a comprehensive foundation for operational implementation, while identified future research directions offer pathways for continued advancement. By combining the physical understanding embedded in process-based models with the pattern recognition capabilities of machine learning, and by systematically leveraging the wealth of Earth observation data now available, the climate science community can deliver the high-resolution, reliable climate information needed to navigate an uncertain future.

References

Abdalla, R. (2024). Framework for Assessing the Impacts of Climate Change on Urban Agglomerations: A GIS and Remote Sensing Perspective. In *Urban Agglomeration-Extracting Lessons for Sustainable Development*. IntechOpen. <https://www.intechopen.com/chapters/1178516>

Baño-Medina, J., Manzanas, R., & Gutiérrez, J. M. (2020). Configuration and intercomparison of deep learning neural models for statistical downscaling. *Geoscientific Model Development*, 13(4), 2109–2124.

Bartók, B., Wild, M., Folini, D., Lüthi, D., Kotlarski, S., Schär, C., Vautard, R., Jerez, S., & Imecs, Z. (2017). Projected changes in surface solar radiation in CMIP5 global climate models and in EURO-CORDEX regional climate models for Europe. *Climate Dynamics*, 49(7–8), 2665–2683. <https://doi.org/10.1007/s00382-016-3471-2>

Bedia, J., Herrera, S., & Gutiérrez, J. M. (2013). Dangers of using global bioclimatic datasets for ecological niche modeling. Limitations for future climate projections. *Global and Planetary Change*, 107, 1–12.

Chen, Y., Sharma, S., Zhou, X., Yang, K., Li, X., Niu, X., Hu, X., & Khadka, N. (2021). Spatial performance of multiple reanalysis precipitation datasets on the southern slope of central Himalaya. *Atmospheric Research*, 250, 105365.

Cheng, H., Conway, E., Heggedahl, T., Morgan, J., & Schlessman, B. (2022). Explore AI and machine learning for future ISR collection planning and management. *Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications IV*, 12113, 352–360. <https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12113/0000/Explore-AI-and-machine-learning-for-future-ISR-collection-planning/10.1117/12.2619117.short>

Deep, G., & Verma, J. (2024). Deep Learning Models for Fine-Scale Climate Change Prediction: Enhancing Spatial and Temporal Resolution Using AI. In G. Tripathi, A. Shakya, S. Kanga, S. K. Singh, & P. K. Rai (Eds.), *Big Data, Artificial Intelligence, and Data Analytics in Climate Change Research* (pp. 81–100). Springer Nature Singapore. https://doi.org/10.1007/978-981-97-1685-2_5

Duan, K., & Mei, Y. (2014). Comparison of Meteorological, Hydrological and Agricultural Drought Responses to Climate Change and Uncertainty Assessment. *Water Resources Management*, 28(14), 5039–5054. <https://doi.org/10.1007/s11269-014-0789-6>

Durre, I., Menne, M. J., & Vose, R. S. (2008). Strategies for evaluating quality assurance procedures. *Journal of Applied Meteorology and Climatology*, 47(6), 1785–1791.

ED Chaves, M., CA Picoli, M., & D. Sanches, I. (2020). Recent applications of Landsat 8/OLI and Sentinel-2/MSI for land use and land cover mapping: A systematic review. *Remote Sensing*, 12(18), 3062.

Giorgi, F. (2020). Regional Dynamical Downscaling. In *Oxford Research Encyclopedia of Climate Science*. <https://oxfordre.com/climatescience/display/10.1093/acrefore/9780190228620.001.0001/acrefore-9780190228620-e-784>

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. *Journal of Machine Learning Research*, 3(Mar), 1157–1182.

Hannachi, A. (2021). *Patterns Identification and Data Mining in Weather and Climate*. Springer International Publishing. <https://doi.org/10.1007/978-3-030-67073-3>

Izzaddin, A., Langousis, A., Yaseen, M., & Iacobellis, V. (2025). Dry GCMs vs. wet RCMs: Precipitation biases over Southern Italy. *Stochastic Environmental Research and Risk Assessment*, 39(8), 3375–3390. <https://doi.org/10.1007/s00477-025-03022-z>

Jafarzadeh, A., Pourreza-Bilondi, M., Khashei, Siuki, A., & Ramezani Moghadam, J. (2021). Examination of Various Feature Selection Approaches for Daily Precipitation Downscaling in Different Climates. *Water Resources Management*, 35(2), 407–427. <https://doi.org/10.1007/s11269-020-02701-6>

Jewson, S. (2020). An alternative to PCA for estimating dominant patterns of climate variability and extremes, with application to US and China seasonal rainfall. *Atmosphere*, 11(4), 354.

Jiménez Morán, D. (2023). *Study of statistical techniques to analyze the climate* [B.S. thesis]. Universitat Politècnica de Catalunya.

Jokar, F., Varnamkhasti, M. J., & Hadi-Vencheh, A. (2025). Hybrid Multi-Criteria Decision-Making (MCDM) approaches with random forest regression for interval-based fuzzy uncertainty management. *International Journal of Mathematical Modelling & Computations*, 15(1), 49–66.

Keller, A. A., Garner, K. L., Rao, N., Knipping, E., & Thomas, J. (2022). Downscaling approaches of climate change projections for watershed modeling: Review of theoretical and practical considerations. *PLoS Water*, 1(9), e0000046.

Kemarau, R. A., Suab, S. A., Ebey, O. V., Sa'adi, Z., Echoh, D. U., & Sakawi, Z. (2025). Integrative Approaches in Remote Sensing and GIS for Assessing Climate Change Impacts Across Malaysian Ecosystems and Societies. *Sustainability*, 17(4), 1344.

Kim, C.-G., Lee, J., Lee, J.-E., & Kim, H. (2025). Monthly Temperature Prediction in the Han River Basin, South Korea, Using Long Short-Term Memory (LSTM) and Multiple Linear Regression (MLR) Models. *Water*, 18(1), 98.

Kotamarthi, R., Hayhoe, K., Wuebbles, D., Mearns, L. O., Jacobs, J., & Jurado, J. (2021). *Downscaling techniques for high-resolution climate projections: From global change to local impacts*. Cambridge University Press. <https://books.google.com/books?hl=en&lr=&id=yb4OEAAAQBAJ&oi=fnd&pg=PR9&dq=related:qJiIaMTU64j:scholar.google.com/&ots=1UE54d8Yoj&sig=wyOe29HgakvUoNTAd50poSzUIEU>

Kuhn, M., & Johnson, K. (2013). *Applied Predictive Modeling*. Springer New York. <https://doi.org/10.1007/978-1-4614-6849-3>

Labeyrthere, D., Reffet, A., & Schrapffer, A. (2024). An overview of statistical downscaling methods: Techniques, applications, and advances. *Applications, and Advances* (December 06, 2024). https://www.researchgate.net/profile/Anthony-Schrapffer/publication/388472320_An-Overview_of_Statistical_Downscaling_Methods_Techniques_Applications_and_Advances/links/67e6b306e8041142a14ae697/An-Overview-of-Statistical-

Downscaling-Methods-Techniques-Applications-and-Advances.pdf

Lezama Valdes, L.-M., Katurji, M., & Meyer, H. (2021). A machine learning based downscaling approach to produce high spatio-temporal resolution land surface temperature of the antarctic dry valleys from MODIS data. *Remote Sensing*, 13(22), 4673.

Malhomme, N. (2024). *Statistical learning for climate models* [PhD Thesis, Université Paris-Saclay]. <https://theses.hal.science/tel-04939186/>

Maraun, D., & Widmann, M. (2018). *Statistical downscaling and bias correction for climate research*. Cambridge University Press.

Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., & Gomis, M. I. (2021). Climate change 2021: The physical science basis. *Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change*, 2(1), 2391.

Meng, X., Zhao, H., Shu, T., Zhao, J., & Wan, Q. (2024). Machine learning-based spatial downscaling and bias-correction framework for high-resolution temperature forecasting. *Applied Intelligence*, 54(17-18), 8399-8414.

Najafi, H., Lagerwall, G. L., Obeysekera, J., & Liu, J. (2025a). *Machine Learning in Climate Downscaling: A Critical Review of Methodologies, Persistent Challenges, and Future Trajectories*. <https://www.preprints.org/manuscript/202511.1538>

Najafi, H., Lagerwall, G. L., Obeysekera, J., & Liu, J. (2025b). *Machine Learning in Climate Downscaling: A Critical Review of Methodologies, Persistent Challenges, and Future Trajectories*. <https://www.preprints.org/manuscript/202511.1538>

Nasiri, V., Deljouei, A., Moradi, F., Sadeghi, S. M. M., & Borz, S. A. (2022). Land use and land cover mapping using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A comparison of two composition methods. *Remote Sensing*, 14(9), 1977.

Nigrelli, G., Fratianni, S., Zampollo, A., Turconi, L., & Chiarle, M. (2018). The altitudinal temperature lapse rates applied to high elevation rockfalls studies in the Western European Alps. *Theoretical and Applied Climatology*, 131(3-4), 1479-1491. <https://doi.org/10.1007/s00704-017-2066-0>

Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. *IEEE Transactions on Knowledge and Data Engineering*, 22(10), 1345-1359.

Peng, S., Ding, Y., Liu, W., & Li, Z. (2019). 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. *Earth System Science Data*, 11(4), 1931-1946.

Pervez, S., McNally, A., Arsenault, K., Budde, M., & Rowland, J. (2021). Vegetation monitoring optimization with normalized difference vegetation index and evapotranspiration using remote sensing measurements and land surface models over east Africa. *Frontiers in Climate*, 3, 589981.

Raschka, S. (2020). *Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning* (arXiv:1811.12808). arXiv. <https://doi.org/10.48550/arXiv.1811.12808>

Rasp, S., Pritchard, M. S., & Gentine, P. (2018). Deep learning to represent subgrid processes in climate models. *Proceedings of the National Academy of Sciences*, 115(39), 9684-9689. <https://doi.org/10.1073/pnas.1810286115>

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., & Prabhat, F. (2019). Deep learning and process understanding for data-driven Earth system science. *Nature*, 566(7743), 195-204.

Resseguier, V., Li, L., Jouan, G., Dérian, P., Mémin, E., & Chapron, B. (2021). New trends in ensemble forecast strategy: Uncertainty quantification for coarse-grid computational fluid dynamics. *Archives of Computational Methods in Engineering*, 28(1), 215-261.

Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-Arroita, G., Hauenstein, S., Lahoz-Monfort, J. J., Schröder, B., Thuiller, W., Warton, D. I., Wintle, B. A., Hartig, F., & Dormann, C. F. (2017). Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. *Ecography*, 40(8), 913-929. <https://doi.org/10.1111/ecog.02881>

Sachindra, D. A., Ahmed, K., Rashid, M. M., Shahid, S., & Perera, B. J. C. (2018). Statistical downscaling of precipitation using machine learning techniques. *Atmospheric Research*, 212, 240-258.

Sdraka, M., Papoutsis, I., Psomas, B., Vlachos, K., Ioannidis, K., Karantzalos, K., Gialampoukidis, I., & Vrochidis, S. (2022). Deep learning for downscaling remote sensing images: Fusion and super-resolution. *IEEE Geoscience and Remote Sensing Magazine*, 10(3), 202-255.

Senanayake, I. P., Pathira Arachchilage, K. R., Yeo, I.-Y., Khaki, M., Han, S.-C., & Dahlhaus, P. G. (2024). Spatial downscaling of satellite-based soil moisture products using machine learning techniques: A review. *Remote Sensing*, 16(12), 2067.

Sharma, K. V., Khandelwal, S., & Kaul, N. (2020). Comparative Assessment of Vegetation Indices in Downscaling of MODIS Satellite Land Surface Temperature. *Remote Sensing in Earth Systems Sciences*, 3(3-4), 156–167. <https://doi.org/10.1007/s41976-020-00040-z>

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., & Woo, W. (2015). Convolutional LSTM network: A machine learning approach for precipitation nowcasting. *Advances in Neural Information Processing Systems*, 28. <https://proceedings.neurips.cc/paper/2015/hash/07563a3fe3bbe7e3ba84431ad9d055af-Abstract.html>

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning. *Journal of Big Data*, 6(1), 60. <https://doi.org/10.1186/s40537-019-0197-0>

Stengel, K., Glaws, A., Hettinger, D., & King, R. N. (2020). Adversarial super-resolution of climatological wind and solar data. *Proceedings of the National Academy of Sciences*, 117(29), 16805–16815. <https://doi.org/10.1073/pnas.1918964117>

Teegavarapu, R. S., & Chandramouli, V. (2005). Improved weighting methods, deterministic and stochastic data-driven models for estimation of missing precipitation records. *Journal of Hydrology*, 312(1-4), 191–206.

Vandal, T., Kodra, E., & Ganguly, A. R. (2019a). Intercomparison of machine learning methods for statistical downscaling: The case of daily and extreme precipitation. *Theoretical and Applied Climatology*, 137(1-2), 557–570. <https://doi.org/10.1007/s00704-018-2613-3>

Vandal, T., Kodra, E., & Ganguly, A. R. (2019b). Intercomparison of machine learning methods for statistical downscaling: The case of daily and extreme precipitation. *Theoretical and Applied Climatology*, 137(1-2), 557–570. <https://doi.org/10.1007/s00704-018-2613-3>

Verhagen, P., & Sarris, A. (2023). GIS-based spatial analysis and modelling. In *GIS Applications in Roman Landscape and Territory: Methodologies and models in Hispania* (pp. 173–182). BAR Publishing. https://research.vu.nl/files/251898348/Trapero_Fernandez_9781407354187_Chapter_12.pdf

Wang, F., Tian, D., Lowe, L., Kalin, L., & Lehrter, J. (2021). Deep Learning for Daily Precipitation and Temperature Downscaling. *Water Resources Research*, 57(4), e2020WR029308. <https://doi.org/10.1029/2020WR029308>

Xu, R., Tian, F., Yang, L., Hu, H., Lu, H., & Hou, A. (2017). Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network. *Journal of Geophysical Research: Atmospheres*, 122(2), 910–924. <https://doi.org/10.1002/2016JD025418>

Xu, Y., Hu, C., Wu, Q., Jian, S., Li, Z., Chen, Y., Zhang, G., Zhang, Z., & Wang, S. (2022). Research on particle swarm optimization in LSTM neural networks for rainfall-runoff simulation. *Journal of Hydrology*, 608, 127553.

Yoo, C., Im, J., Park, S., & Quackenbush, L. J. (2018). Estimation of daily maximum and minimum air temperatures in urban landscapes using MODIS time series satellite data. *ISPRS Journal of Photogrammetry and Remote Sensing*, 137, 149–162.

Zhao, T., Wang, S., Ouyang, C., Chen, M., Liu, C., Zhang, J., Yu, L., Wang, F., Xie, Y., & Li, J. (2024). Artificial intelligence for geoscience: Progress, challenges, and perspectives. *The Innovation*, 5(5). [https://www.cell.com/the-innovation/fulltext/S2666-6758\(24\)00129-2](https://www.cell.com/the-innovation/fulltext/S2666-6758(24)00129-2)

Zhu, H., Zhou, Q., & Krisp, J. M. (2025). Exploring machine learning approaches for precipitation downscaling. *Geo-Spatial Information Science*, 28(6), 2673-2689. <https://doi.org/10.1080/10095020.2025.2477547>

