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Abstract 
Gallbladder cancer (GBC) remains one of the most aggressive hepatobiliary 
malignancies, largely due to late-stage diagnosis and the absence of reliable, non-
invasive screening strategies, particularly in low- and middle-income countries. 
Conventional ultrasound imaging is widely used as a first-line diagnostic 
modality; however, its effectiveness is highly operator-dependent and limited in 
detecting early-stage malignant changes. This study aims to evaluate the clinical 
utility of deep learning–enabled ultrasound imaging for the early screening and 
diagnosis of gallbladder cancer in a real-world tertiary care setting. A prospective 
diagnostic study was conducted at Ayub Teaching Hospital, Abbottabad, 
Pakistan, involving patients presenting with suspected gallbladder pathology. 
Ultrasound images were acquired using standardized imaging protocols and 
annotated by experienced radiologists. A deep learning framework based on 
convolutional neural networks was developed to automatically analyze 
ultrasound images and classify gallbladder lesions into malignant and non-
malignant categories. The model was trained, validated, and tested using 
institution-specific datasets to ensure clinical relevance and robustness. Diagnostic 
performance was assessed using accuracy, sensitivity, specificity, precision, F1-
score, and area under the receiver operating characteristic curve (AUC), with 
histopathology and expert consensus serving as reference standards. The proposed 
deep learning model demonstrated strong diagnostic performance, achieving high 
sensitivity and specificity in differentiating gallbladder cancer from benign 
conditions such as cholelithiasis and chronic cholecystitis. Notably, the AI-assisted 
system showed improved detection of subtle morphological features that are often 
overlooked in conventional ultrasound interpretation. Comparative analysis 
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revealed that the deep learning–enabled approach outperformed routine 
ultrasound assessment, particularly in early-stage disease identification. The 
model also exhibited consistent performance across varying image qualities, 
highlighting its potential to reduce inter-observer variability and diagnostic 
subjectivity. This study provides prospective clinical evidence supporting the 
integration of deep learning–powered ultrasound imaging into gallbladder cancer 
screening workflows. The findings suggest that AI-assisted ultrasound can enhance 
diagnostic accuracy, facilitate early detection, and support clinical decision-
making in resource-constrained healthcare environments. Adoption of such 
intelligent diagnostic systems may significantly improve patient outcomes through 
timely intervention and personalized management. Future work will focus on 
multi-center validation, explainable AI integration, and real-time deployment to 
further advance AI-driven gallbladder cancer screening. 

 
1-        Introduction: 
Gallbladder cancer (GBC) is one of the most 
aggressive malignancies of the hepatobiliary system 
and is associated with exceptionally poor survival 
outcomes. Although relatively uncommon 
worldwide, its incidence demonstrates 
pronounced geographic variability, with 
disproportionately high disease burden reported 
in South Asia, Latin America, and parts of Eastern 
Europe. In Pakistan, gallbladder cancer constitutes 
a significant clinical concern due to delayed 
presentation, limited access to advanced 
diagnostic modalities, and frequent coexistence 
with benign gallbladder diseases such as 
cholelithiasis and chronic cholecystitis. The 
overall five-year survival rate remains extremely 
low, largely because the majority of patients are 
diagnosed at advanced stages when curative 
surgical resection is no longer feasible. Early 
detection is the most critical determinant of 
prognosis in gallbladder cancer; however, 
achieving this remains clinically challenging [1]. In 
its initial stages, GBC is often asymptomatic or 
presents with vague, non-specific symptoms that 
closely resemble benign biliary disorders. Imaging 
therefore plays a central role in screening and 
diagnostic evaluation. Among available 
modalities, ultrasound imaging is widely used as 
the first-line diagnostic tool due to its non-invasive 
nature, affordability, lack of ionizing radiation, 
and widespread availability particularly in low- and 
middle-income countries. Ultrasound is routinely 
employed to assess gallbladder wall thickness, 
intraluminal masses, polyps, and gallstones, which 

are key features associated with both benign and 
malignant conditions. Despite its widespread use, 
conventional ultrasound has notable limitations 
in the early detection of gallbladder malignancy. 
Diagnostic accuracy is highly dependent on 
operator expertise, image acquisition quality, and 
subjective interpretation. Subtle malignant 
features such as focal wall irregularity, early 
infiltrative growth, and minimal mucosal 
disruption are frequently overlooked or 
misinterpreted as inflammatory changes [2]. 
Moreover, considerable inter-observer variability 
exists among radiologists, further reducing 
diagnostic consistency. These limitations 
underscore the urgent need for robust, objective, 
and reproducible screening strategies that can 
enhance early detection while remaining feasible 
in resource-constrained healthcare environments. 
Recent advances in artificial intelligence (AI), 
particularly deep learning, have transformed 
medical image analysis by enabling automated, 
data-driven feature extraction and classification. 
Convolutional neural networks (CNNs) have 
demonstrated exceptional performance across 
multiple imaging modalities, including 
radiography, computed tomography, magnetic 
resonance imaging, and ultrasound. In ultrasound 
imaging, deep learning models are particularly 
valuable because they can learn complex spatial 
and textural patterns from noisy and operator-
dependent data, thereby reducing subjectivity and 
improving diagnostic reliability. AI-assisted 
ultrasound systems have shown promise in 
detecting subtle morphological changes that may 
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not be readily apparent during routine visual 
assessment. However, despite the growing body of 
research on AI in medical imaging, evidence 
supporting the clinical application of deep 
learning for gallbladder cancer screening remains 
limited [3]. Most published studies are 
retrospective, rely on small or highly curated 
datasets, and are conducted in controlled 
experimental settings that may not reflect routine 
clinical practice. Furthermore, there is a notable 

lack of prospective diagnostic studies from low- 
and middle-income countries, where ultrasound 
remains the primary imaging modality and where 
AI-driven solutions could have the greatest impact. 
To contextualize the diagnostic challenges and 
highlight the motivation for AI integration, Table 
1 summarizes the key limitations of conventional 
ultrasound-based gallbladder cancer screening and 
the potential advantages offered by deep learning–
enabled approaches. 

 
Table 1: Comparison of Conventional Ultrasound and Deep Learning–Enabled Ultrasound for 
Gallbladder Cancer Screening 

Aspect Conventional Ultrasound Deep Learning–Enabled Ultrasound 
Operator dependence Highly operator-dependent Reduced dependence through automated 

analysis 
Detection of early-stage 
disease 

Limited sensitivity for subtle 
lesions 

Enhanced sensitivity via learned feature 
representations 

Inter-observer variability High variability among 
radiologists 

Improved consistency and reproducibility 

Feature interpretation Visual assessment of obvious 
features 

Automated identification of subtle 
morphological patterns 

Scalability in low-resource 
settings 

Widely available but 
inconsistent accuracy 

Scalable decision support with consistent 
performance 

Clinical decision support Primarily qualitative Quantitative, AI-assisted diagnostic 
guidance 

 
In this context, the present study aims to evaluate 
the clinical utility of deep learning–enabled 
ultrasound imaging for the early screening and 
diagnosis of gallbladder cancer through a 
prospective diagnostic study conducted at Ayub 
Teaching Hospital, Abbottabad, Pakistan. By 
integrating standardized ultrasound acquisition 
protocols with a convolutional neural network–
based analysis framework, this study seeks to 
determine whether AI-assisted ultrasound can 
outperform routine clinical assessment in 
distinguishing malignant from non-malignant 
gallbladder conditions. The findings are intended 
to provide prospective clinical evidence 
supporting the adoption of AI-driven diagnostic 
support systems to improve early detection, reduce 
diagnostic subjectivity, and enhance patient 
outcomes in resource-limited healthcare 
environments. 
 

2-     Artificial Intelligence and Deep 
Learning in Medical Imaging: 
Artificial intelligence (AI) has emerged as one of 
the most disruptive and transformative 
technologies in modern medical imaging, 
fundamentally altering how diagnostic 
information is extracted, interpreted, and utilized 
in clinical practice. Early computer-aided diagnosis 
(CAD) systems were primarily based on 
handcrafted feature extraction and rule-based 
classifiers, which relied heavily on expert-defined 
thresholds and prior assumptions about image 
characteristics. Although these systems 
demonstrated limited success in specific 
applications, their performance was constrained 
by poor generalizability, sensitivity to noise, and an 
inability to capture complex, non-linear 
relationships inherent in medical imaging data. 
The advent of deep learning, particularly 
convolutional neural networks (CNNs), has 
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revolutionized medical image analysis by enabling 
end-to-end learning directly from raw image data. 
CNNs are specifically designed to process grid-like 
data structures, making them highly effective for 
imaging tasks. Through stacked convolutional 
layers, pooling operations, and non-linear 
activations, CNNs automatically learn hierarchical 
feature representations ranging from low-level 
edges and textures to high-level semantic and 
anatomical patterns [4]. This hierarchical learning 
capability allows deep learning models to identify 
subtle morphological and textural variations that 
may be imperceptible to the human eye, especially 
in early disease stages. Deep learning techniques 
have achieved remarkable success across a wide 
spectrum of medical imaging modalities, including 
radiography, computed tomography (CT), 
magnetic resonance imaging (MRI), positron 
emission tomography (PET), and ultrasound. In 
radiology, CNN-based models have demonstrated 
expert-level performance in detecting lung 
nodules, breast lesions, intracranial hemorrhage, 
and musculoskeletal abnormalities. In oncology, 
deep learning has enabled automated tumor 
segmentation, staging, and treatment response 
assessment, contributing to more precise and 
personalized patient management. These advances 
have positioned AI not merely as an auxiliary tool, 
but as an integral component of next-generation 
diagnostic workflows. A major advantage of deep 
learning in medical imaging lies in its ability to 
reduce inter-observer variability and diagnostic 
subjectivity. Human interpretation of medical 
images is influenced by experience, training 
background, workload, and cognitive bias, often 
resulting in inconsistent diagnostic outcomes 
across clinicians [5]. AI-driven systems, by contrast, 
provide standardized and reproducible analyses, 
offering consistent decision support across 
different clinical settings. This consistency is 

particularly valuable in screening and triage 
applications, where large volumes of images must 
be interpreted rapidly and accurately. In addition 
to improving diagnostic accuracy, deep learning 
enables the extraction of quantitative imaging 
biomarkers that extend beyond conventional 
visual assessment. These data-driven biomarkers 
capture information related to lesion shape, 
texture heterogeneity, intensity distributions, and 
spatial relationships, facilitating more 
comprehensive disease characterization. Such 
quantitative insights support early disease 
detection, risk stratification, and longitudinal 
monitoring. Importantly, deep learning models 
are capable of learning robust representations even 
in noisy or low-quality images, making them well 
suited for real-world clinical environments. 
Ultrasound imaging represents a particularly 
challenging domain for automated analysis due to 
speckle noise, operator-dependent acquisition, 
and variability in probe orientation and image 
quality [6]. Despite these challenges, deep learning 
has demonstrated strong potential in ultrasound-
based applications, including breast lesion 
classification, liver fibrosis staging, thyroid nodule 
detection, fetal anomaly screening, and vascular 
assessment. CNNs trained on ultrasound data 
have shown resilience to image artifacts and 
variability, outperforming traditional machine 
learning approaches and achieving performance 
comparable to experienced radiologists. These 
characteristics make deep learning especially 
attractive for ultrasound-based screening in low- 
and middle-income countries, where ultrasound 
remains the most accessible imaging modality. 
Table 2 provides a conceptual comparison 
between traditional CAD systems and deep 
learning–based medical imaging approaches, 
highlighting the methodological and clinical 
advantages introduced by modern AI techniques. 

 
Table 2: Evolution of Computer-Aided Diagnosis toward Deep Learning–Based Medical Imaging 

Dimension Traditional CAD Systems Deep Learning–Based Systems 
Feature design Handcrafted by experts Automatically learned from data 
Model complexity Limited, linear or shallow Highly non-linear, deep architectures 
Sensitivity to noise High Relatively robust 
Adaptability across datasets Poor Improved with data diversity 
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Inter-observer variability Not addressed Significantly reduced 
Clinical scalability Limited High scalability and automation 
Suitability for screening Moderate Highly suitable for large-scale screening 

 
Despite these advantages, the clinical deployment 
of deep learning systems in medical imaging 
requires careful consideration of transparency, 
interpretability, and clinical integration. Black-box 
decision-making has raised concerns among 
clinicians and regulatory bodies, prompting 
increased interest in explainable AI (XAI) 
techniques. Methods such as class activation 
mapping, attention mechanisms, and saliency 
visualization provide intuitive insights into model 
predictions by highlighting image regions that 

contribute most strongly to diagnostic decisions 
[7]. These approaches enhance clinician trust and 
support safe adoption of AI in routine practice. 
Figure 2 illustrates a generalized deep learning–
enabled medical imaging workflow, depicting how 
raw imaging data are transformed into clinically 
actionable insights through automated feature 
extraction and classification. This framework 
emphasizes the role of AI as a decision-support 
system that augments clinical expertise rather than 
replacing it. 

 

 
Figure 1: Conceptual workflow of deep learning–enabled medical imaging. 

 
Artificial intelligence and deep learning have 
ushered in a paradigm shift from subjective, 
experience-driven image interpretation to 
objective, data-driven diagnostic analysis. These 
advances provide a strong technological 
foundation for AI-assisted screening strategies, 

particularly in diseases such as gallbladder cancer 
where early diagnosis is challenging yet critical. By 
leveraging deep learning–enabled medical 
imaging, healthcare systems can move toward 
more accurate, consistent, and scalable diagnostic 
solutions, ultimately improving patient outcomes 
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in both high-resource and resource-constrained 
settings. 
3-    Role of Ultrasound Imaging in 
Gallbladder Cancer Detection: 
Ultrasound imaging is the most widely used first-
line diagnostic modality for the evaluation of 
gallbladder pathology in routine clinical practice. 
Its non-invasive nature, absence of ionizing 
radiation, real-time imaging capability, 
affordability, and broad availability make 
ultrasound particularly suitable for initial 
assessment in both high-resource and resource-
constrained healthcare settings. In countries such 
as Pakistan, where access to advanced imaging 
modalities may be limited, ultrasound serves as the 
primary screening and diagnostic tool for patients 
presenting with suspected hepatobiliary disease. 
Clinically, ultrasound is routinely employed to 
evaluate gallstones, gallbladder wall thickness, 
intraluminal masses, polyps, sludge, and 
pericholecystic changes [8]. Certain ultrasound 
features such as a mass replacing the gallbladder, 
marked irregular wall thickening, or invasion into 
adjacent liver tissue are well-recognized indicators 
of advanced gallbladder malignancy. Multiple 
studies have demonstrated that ultrasound can 
identify late-stage gallbladder cancer with 
reasonable diagnostic accuracy when overt 
morphological abnormalities are present. As a 
result, ultrasound plays a critical role in the initial 
detection and referral of patients with suspected 
advanced disease. Despite its clinical utility, the 
role of ultrasound in detecting early-stage 
gallbladder cancer remains limited [9]. Early 
malignant changes often manifest as subtle 
findings, including focal or asymmetric wall 
thickening, minimal mucosal irregularity, or small 

intraluminal lesions. These features frequently 
overlap with benign conditions such as chronic 
cholecystitis, adenomyomatosis, and 
inflammatory wall changes associated with 
gallstones. Consequently, early gallbladder cancer 
is commonly misclassified as benign disease, 
leading to delayed diagnosis and missed 
opportunities for curative surgical intervention. 
Another major limitation of conventional 
ultrasound lies in its operator dependence. Image 
acquisition quality is influenced by factors such as 
probe positioning, scanning angle, patient body 
habitus, and bowel gas interference. Furthermore, 
image interpretation is largely subjective and 
dependent on the radiologist’s experience and 
expertise. This subjectivity contributes to 
significant inter-observer variability, particularly 
when evaluating borderline or indeterminate 
findings. Differences in training and workload can 
further exacerbate inconsistency in diagnostic 
outcomes, especially in high-volume clinical 
settings. In addition, ultrasound image quality can 
vary substantially across examinations due to 
differences in equipment, acquisition parameters, 
and patient-related factors [10]. Variability in 
image contrast, resolution, and noise levels can 
obscure subtle pathological features, further 
reducing diagnostic confidence. These challenges 
limit the reliability of ultrasound as a standalone 
screening tool for early gallbladder cancer and 
highlight the need for objective, reproducible 
methods to assist clinicians in image 
interpretation. Table 3 summarizes the key 
strengths and limitations of conventional 
ultrasound imaging in the context of gallbladder 
cancer detection, emphasizing the diagnostic gaps 
that persist in early-stage disease. 

 
Table 3: Strengths and Limitations of Conventional Ultrasound in Gallbladder Cancer Detection 

Aspect Strengths Limitations 
Accessibility Widely available and low 

cost 
Limited access to high-end systems in some 
settings 

Safety Non-invasive and radiation-
free 

Operator fatigue can affect performance 

Detection of advanced 
disease 

Good sensitivity for overt 
malignancy 

Poor sensitivity for early-stage disease 
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Lesion characterization Effective for large masses 
and stones 

Difficulty distinguishing benign vs malignant 
subtle changes 

Operator dependence Flexible and real-time High inter-observer variability 
Diagnostic consistency Rapid initial assessment Subjective interpretation and inconsistency 

 
Given these limitations, ultrasound-based 
gallbladder cancer screening remains heavily 
reliant on clinician expertise, and early malignant 
lesions are frequently overlooked. This diagnostic 
gap is particularly problematic in regions with high 
gallbladder cancer incidence, where early 
detection could substantially improve survival 
outcomes. Enhancing the diagnostic capability of 
ultrasound without compromising its accessibility 

and affordability has therefore become a key 
research priority. Figure 2 illustrates typical 
ultrasound appearances of gallbladder pathology, 
highlighting the visual overlap between benign 
inflammatory conditions and early malignant 
changes. This overlap underscores the inherent 
difficulty of relying solely on conventional visual 
assessment for early cancer detection. 

 

 
Figure 2: Representative ultrasound appearances of gallbladder pathology. 

 
While ultrasound remains indispensable as a first-
line imaging modality for gallbladder evaluation, 
its limitations in early-stage cancer detection, 
operator dependence, and diagnostic subjectivity 
restrict its effectiveness as a standalone screening 
tool. These challenges provide a strong clinical 
rationale for integrating advanced computational 
approaches such as artificial intelligence and deep 
learning into ultrasound-based diagnostic 

workflows to enhance accuracy, consistency, and 
early detection of gallbladder cancer. 
 
4-        Methodology: 
This study was designed as a prospective diagnostic 
accuracy investigation aimed at evaluating the 
clinical utility of deep learning–enabled 
ultrasound imaging for the screening and 
diagnosis of gallbladder cancer within a real-world 
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tertiary care environment. The proposed 
methodology integrates standardized ultrasound 
image acquisition protocols, expert radiological 
interpretation, and a convolutional neural 
network (CNN)–based deep learning framework 
to facilitate automated, data-driven analysis of 
gallbladder ultrasound images. By employing a 
prospective study design, the investigation ensures 
strong clinical relevance, reduces selection and 
information bias, and accurately reflects routine 
diagnostic workflows encountered in everyday 
clinical practice [11]. Model development, 
training, validation, and testing were performed 
using institution-specific datasets to capture local 
population characteristics and imaging variability. 
Histopathological findings from surgical 
specimens or biopsies were used as the primary 
reference standard whenever available, while 
expert radiological consensus supported by clinical 
follow-up served as an alternative reference in non-
surgical cases. The diagnostic performance of the 
proposed AI-assisted system was systematically 
evaluated using established quantitative metrics, 
including accuracy, sensitivity, specificity, 
precision, F1-score, and area under the receiver 
operating characteristic curve (AUC), and was 
directly compared with conventional ultrasound 
interpretation to determine the added clinical 
value of deep learning–based decision support. 
 
4.1-          Study Population and Patient 
Recruitment: 
This prospective diagnostic study enrolled 
consecutive adult patients presenting to the 
radiology department with clinical suspicion of 
gallbladder pathology during the defined study 
period. A consecutive recruitment strategy was 
deliberately employed to minimize selection bias 
and to ensure that the study population accurately 
represented the spectrum of patients encountered 
in routine tertiary care practice. By avoiding 
selective sampling, the study aimed to capture real-
world variability in disease presentation, imaging 
quality, and clinical complexity, thereby 
enhancing the external validity and generalizability 
of the findings. Patients were referred for 
abdominal ultrasound examination from both 
outpatient and inpatient services based on clinical 

indications suggestive of hepatobiliary disease [12]. 
Common presenting symptoms included right 
upper quadrant abdominal pain, dyspepsia, 
nausea, vomiting, jaundice, unexplained weight 
loss, and abnormal liver function tests. In addition 
to symptomatic individuals, patients with 
incidentally detected gallbladder abnormalities on 
prior imaging studies or routine health evaluations 
were also considered eligible. This inclusive 
approach enabled the recruitment of a 
heterogeneous cohort encompassing benign 
gallbladder conditions, premalignant changes, and 
suspected malignant lesions, which is essential for 
evaluating diagnostic discrimination in a 
screening-oriented context. Eligibility criteria were 
carefully defined to ensure diagnostic validity and 
data quality. Inclusion was restricted to adults (≥18 
years) undergoing abdominal ultrasound with a 
native gallbladder in situ. Patients with a 
previously established diagnosis of gallbladder 
cancer were excluded to prevent incorporation 
bias, as prior knowledge of malignancy could 
artificially inflate diagnostic performance. 
Individuals who had undergone prior gallbladder 
surgery, including cholecystectomy, were excluded 
due to altered anatomy and the absence of 
evaluable gallbladder tissue [13]. Furthermore, 
cases with incomplete demographic or clinical 
information, missing imaging data, or ultrasound 
images of insufficient quality such as those 
affected by severe motion artifacts or inadequate 
gallbladder visualization were excluded to 
maintain analytical robustness. Before 
participation, all eligible patients provided written 
informed consent after receiving a detailed 
explanation of the study objectives, data usage 
procedures, and confidentiality safeguards. 
Participants were informed that the deep learning 
system functioned solely as a research-based 
decision-support tool and did not influence 
clinical diagnosis or management during the study 
period. Ethical principles of autonomy, 
confidentiality, and data protection were strictly 
upheld throughout recruitment and data 
handling. Comprehensive demographic and 
clinical information was systematically recorded 
for each participant, including age, sex, presenting 
symptoms, relevant medical history, and known 
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risk factors such as gallstones, chronic 
cholecystitis, or metabolic comorbidities. These 
variables were collected to enable subgroup 
analyses, facilitate interpretation of diagnostic 
performance across patient categories, and assess 
potential confounding factors influencing 

ultrasound appearance and AI model predictions. 
Table 4 presents a detailed summary of the 
inclusion and exclusion criteria applied during 
patient recruitment, providing clarity and 
transparency regarding study eligibility. 

 
Table 4: Eligibility Criteria for Patient Recruitment 

Criterion Eligible Not Eligible 
Age ≥ 18 years ✓ ✗ 
Undergoing abdominal ultrasound for suspected gallbladder pathology ✓ ✗ 
Presence of biliary symptoms (RUQ pain, dyspepsia, nausea, vomiting, jaundice) ✓ ✗ 
Incidental gallbladder abnormality on prior imaging ✓ ✗ 
Previously diagnosed gallbladder cancer ✗ ✓ 
History of gallbladder surgery (e.g., cholecystectomy) ✗ ✓ 
Complete clinical and demographic data available ✓ ✗ 
Diagnostic-quality ultrasound images ✓ ✗ 

To further enhance methodological transparency, 
Figure 3 illustrates the structured patient 
recruitment and selection workflow, depicting the 

progression from initial patient presentation to 
final inclusion in the analytical dataset. 

 
Figure 3: Flow diagram illustrating patient recruitment, eligibility screening, application of exclusion 

criteria, informed consent acquisition, and final inclusion of participants in the prospective diagnostic 
study. 
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This structured and ethically grounded 
recruitment strategy ensured the development of a 
representative and clinically meaningful study 
cohort. By capturing the full spectrum of 
gallbladder pathology encountered in routine 
practice, the study population provides a robust 
foundation for evaluating the real-world 
diagnostic performance of deep learning–enabled 
ultrasound imaging for gallbladder cancer 
screening and early detection. 
 
4.2-         Ultrasound Image Acquisition 
Protocol: 
Ultrasound image acquisition was performed 
using standard clinical ultrasound systems 
routinely employed at the study site for abdominal 
and hepatobiliary imaging. Ultrasound was 
selected as the primary imaging modality due to its 
widespread availability, non-invasive nature, real-
time imaging capability, and established role as the 
first-line diagnostic tool for gallbladder pathology. 
To ensure methodological consistency and reduce 
inter-examination variability, a standardized 
ultrasound acquisition protocol was implemented 
across all enrolled patients [14]. All examinations 
were conducted by trained sonographers and 
consultant radiologists with experience in 
abdominal ultrasound imaging, following routine 
clinical practice guidelines. Patients were 
examined after appropriate fasting whenever 
feasible to optimize gallbladder distension and 
visualization. Scans were performed using low-
frequency curvilinear transducers suitable for 
abdominal imaging, with machine settings 
including gain, depth, and focal zones adjusted to 
achieve optimal image quality while maintaining 
consistency across examinations. The gallbladder 

was systematically evaluated in multiple imaging 
planes, including longitudinal, transverse, and 
oblique views, to ensure comprehensive 
anatomical assessment. Particular attention was 
given to visualization of the gallbladder wall 
thickness, lumen contents, intraluminal masses, 
polyps, gallstones, and pericholecystic regions. 
Adjacent hepatic tissue was also assessed to 
identify possible local invasion or secondary 
changes. This multi-plane acquisition strategy was 
adopted to minimize the risk of missing focal or 
asymmetric lesions that may not be apparent in a 
single view. Both static images and short cine loops 
were acquired to capture representative findings 
and dynamic features such as lesion mobility and 
acoustic shadowing. Images demonstrating key 
pathological features such as focal wall irregularity, 
asymmetric thickening, intraluminal masses, or 
suspicious echogenic patterns were preferentially 
stored [15]. All ultrasound data were digitally 
archived in the hospital imaging system in 
standard formats, ensuring traceability and 
compatibility with subsequent deep learning 
analysis. To support reliable AI model 
development, only images that met predefined 
quality criteria adequate gallbladder visualization, 
minimal motion artifacts, and sufficient contrast 
resolution were retained for further processing. 
This approach ensured that the dataset accurately 
reflected real-world clinical imaging while 
maintaining analytical robustness. To provide a 
visual overview of the acquisition process, Figure 4 
illustrates the ultrasound image acquisition 
workflow, from patient preparation and scanning 
to image storage and selection for AI-based 
analysis. 
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Figure 4: Schematic representation of the ultrasound image acquisition. 

 
The implementation of a standardized ultrasound 
image acquisition protocol ensured consistency, 
reproducibility, and high-quality imaging across 
the study cohort. This structured approach 
provided a reliable foundation for subsequent 
image annotation, deep learning model 
development, and diagnostic performance 
evaluation, while closely reflecting routine clinical 
practice in a real-world tertiary care environment. 
 
4.3-             Dataset Preparation and 
Preprocessing: 
Following ultrasound image acquisition and 
expert annotation, a comprehensive dataset 
preparation and preprocessing pipeline was 
implemented to ensure high data quality, 
consistency, and suitability for deep learning–
based analysis. Ultrasound imaging is inherently 
susceptible to variability arising from operator 
technique, patient anatomy, probe orientation, 
and machine-dependent acquisition settings. 
Therefore, careful dataset curation and 

preprocessing were considered essential to 
mitigate noise, reduce bias, and enable robust 
model learning. The initial dataset curation phase 
involved systematic quality assessment of all 
collected ultrasound images [16]. Images were 
reviewed to identify and exclude those with 
inadequate gallbladder visualization, excessive 
speckle noise, motion artifacts, shadowing that 
obscured key anatomical structures, or incomplete 
coverage of the gallbladder lumen and wall. 
Additionally, duplicate images and scans with 
missing or inconsistent metadata were removed. 
This quality control process ensured that only 
diagnostically meaningful images representative of 
real clinical practice were retained for subsequent 
analysis. After quality filtering, standardized 
preprocessing operations were applied to the 
curated dataset. All ultrasound images were resized 
to a fixed spatial resolution to ensure uniform 
input dimensions for the deep learning model and 
to facilitate batch-based processing during 
training. Pixel intensity normalization and scaling 
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were performed to reduce variability caused by 
differences in ultrasound equipment, gain 
settings, and patient-related factors. These 
normalization steps improved numerical stability 
during optimization and enhanced convergence 
behavior during model training. To further 
strengthen model generalization and reduce the 
risk of overfitting, data augmentation techniques 
were selectively applied to the training dataset. 
Augmentation strategies included controlled 
random rotations, horizontal flipping, brightness 
and contrast adjustment, and minor geometric 
transformations. These techniques simulated 
realistic variations in probe orientation, patient 
positioning, and imaging conditions while 
preserving diagnostic integrity. Importantly, 
augmentation was applied only to the training 
subset to avoid introducing artificial bias into 

validation and testing datasets [17]. Given the 
longitudinal and patient-centric nature of 
ultrasound examinations, the dataset was divided 
into training, validation, and testing subsets at the 
patient level rather than the image level. This 
patient-wise partitioning strategy prevented data 
leakage by ensuring that images from the same 
individual did not appear across multiple subsets. 
Such strict separation is critical for unbiased 
performance evaluation and realistic assessment of 
generalization to unseen patients. The training set 
was used for model learning, the validation set for 
hyperparameter tuning and early stopping, and 
the independent test set for final diagnostic 
evaluation. Table 5 summarizes the detailed 
dataset preparation and preprocessing steps 
employed in this study, along with their respective 
objectives and contributions to model robustness. 

 
Table 5: Comprehensive Dataset Preparation and Preprocessing Pipeline 

Stage Methodology Objective 
Data curation Removal of low-quality, incomplete, and duplicate 

images 
Ensure diagnostic reliability 

Quality assessment Exclusion of motion artifacts and poor 
visualization 

Improve label fidelity 

Image resizing Standardized spatial resolution Uniform model input 
Intensity 
normalization 

Pixel scaling and normalization Reduce inter-machine 
variability 

Data augmentation Rotation, flipping, brightness/contrast 
adjustment 

Enhance generalization 

Dataset splitting Patient-level train/validation/test partitioning Prevent data leakage 
Final dataset Curated and standardized ultrasound images Robust model development 

 
To provide a clear visual overview of the dataset 
handling process, Figure 5 illustrates the complete 
preprocessing workflow, highlighting the 

transformation from raw ultrasound images to 
standardized datasets used for deep learning 
model training and evaluation. 
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Figure 5: Schematic representation of the dataset preparation and preprocessing workflow. 

 
This comprehensive dataset preparation and 
preprocessing strategy ensured the creation of a 
high-quality, standardized, and diverse ultrasound 
dataset suitable for deep learning–based 
gallbladder cancer screening. By addressing 
ultrasound-specific challenges, enforcing strict 
patient-level data separation, and enhancing data 
diversity through augmentation, the study 
established a robust methodological foundation 
for reliable model training, validation, and testing. 
This rigorous approach strengthens the credibility, 
reproducibility, and clinical relevance of the 
proposed AI-assisted diagnostic framework. 
 
4.4-          Deep Learning Model Architecture: 
A convolutional neural network (CNN)–based 
deep learning framework was developed to enable 
automated analysis and classification of 
gallbladder ultrasound images. CNNs were 
selected due to their proven effectiveness in 
medical image interpretation, particularly for 
ultrasound data characterized by speckle noise, 
variable contrast, and operator-dependent 
acquisition. The proposed architecture was 
designed to learn discriminative morphological 

and textural features directly from raw ultrasound 
images, eliminating the need for handcrafted 
feature extraction and enabling end-to-end 
optimization. The network architecture follows a 
hierarchical feature learning paradigm, in which 
successive convolutional layers progressively 
extract increasingly abstract image representations 
[18]. Initial convolutional layers focus on low-level 
features such as edges, contours, and local texture 
variations, while deeper layers capture higher-level 
semantic patterns related to gallbladder wall 
irregularity, intraluminal masses, asymmetric 
thickening, and heterogeneous echogenicity. 
These characteristics are clinically relevant 
indicators for distinguishing malignant from non-
malignant gallbladder conditions. Each 
convolutional block consists of convolutional 
filters followed by non-linear activation functions 
to introduce model expressiveness and enable 
learning of complex non-linear relationships. 
Pooling layers are interleaved between 
convolutional blocks to reduce spatial 
dimensionality, control computational 
complexity, and enhance translation invariance. 
This design allows the network to focus on 
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diagnostically relevant structures while remaining 
robust to minor spatial variations in lesion 
appearance and probe positioning. To mitigate 
overfitting and improve generalization, 
regularization strategies were incorporated into 
the architecture. These included dropout layers to 
prevent co-adaptation of neurons and 
normalization layers to stabilize gradient 
propagation during training [19]. Fully connected 
layers at the final stages of the network aggregate 
the learned features and perform high-level 
reasoning, ultimately producing probabilistic 
outputs corresponding to malignant and non-
malignant classes through a softmax or sigmoid 
activation function. The architecture was 
deliberately optimized for binary classification, 
reflecting the primary clinical objective of 
screening-level discrimination between malignant 
and benign gallbladder pathology. By focusing on 

this clinically meaningful dichotomy, the model 
prioritizes sensitivity to early malignant changes 
while maintaining specificity for common benign 
conditions such as cholelithiasis and chronic 
cholecystitis. To enhance transparency and 
interpretability, the architecture was designed to 
be compatible with explainable AI techniques, 
such as class activation mapping and attention 
visualization. These methods enable visualization 
of image regions that contribute most strongly to 
model predictions, supporting clinical 
interpretability and facilitating trust among 
radiologists [20]. This capability is particularly 
important in high-stakes diagnostic applications 
such as cancer screening. Figure 6 illustrates the 
conceptual structure of the CNN-based model 
architecture, depicting the flow of information 
from ultrasound image input through feature 
extraction, classification, and diagnostic output. 

 

 
Figure 6: Convolutional neural network–based architecture used for gallbladder ultrasound image 

analysis. 
 
The proposed deep learning model architecture 
provides a robust, scalable, and clinically aligned 
framework for automated gallbladder ultrasound 
analysis. By combining hierarchical feature 
learning, regularization strategies, and 
compatibility with explainable AI tools, the 
architecture establishes a strong technical 
foundation for accurate and reliable gallbladder 

cancer screening in real-world clinical 
environments. 
 
4.5-     Model Training and Optimization: 
Model training was conducted within a supervised 
deep learning framework, in which gallbladder 
ultrasound images were paired with ground-truth 
labels derived from expert radiological annotation 
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and validated reference standards. The overall 
training strategy was designed to ensure stable 
convergence, robust generalization, and 
reproducible performance under real-world 
clinical imaging conditions. To achieve this, the 
available dataset was partitioned into training and 
validation subsets, with strict separation 
maintained to avoid information leakage and to 
enable unbiased optimization. Prior to training, all 
ultrasound images underwent standardized 
preprocessing, including intensity normalization 
and resizing to a fixed spatial resolution 
compatible with the network input layer. These 
steps reduced inter-scan variability and facilitated 
efficient gradient propagation during 
optimization. The classification objective was 
formulated using cross-entropy loss, a probabilistic 
loss function well suited for binary diagnostic 
tasks, as it penalizes incorrect predictions in 
proportion to the confidence of the model [21]. 
This formulation is particularly effective for 
medical screening applications where balanced 
sensitivity and specificity are critical. Optimization 
of network parameters was performed using 
gradient-based optimization methods with 
adaptive learning rates, allowing the model to 
dynamically adjust update magnitudes during 
training. Adaptive optimization strategies improve 
convergence speed and stability, especially when 
dealing with heterogeneous ultrasound data 
characterized by variable contrast, noise, and 
lesion appearance. Key hyperparameters including 
learning rate, batch size, number of epochs, and 
regularization strength were iteratively tuned 

based on validation set performance rather than 
training accuracy alone. This validation-driven 
tuning strategy ensured that model optimization 
prioritized generalization rather than 
memorization of training samples. To further 
reduce the risk of overfitting, early stopping 
mechanisms were incorporated into the training 
pipeline. Training was automatically terminated 
when validation loss failed to improve over a 
predefined number of epochs, preventing 
degradation of generalization performance due to 
excessive parameter updates [22]. In parallel, 
architectural regularization techniques such as 
dropout layers and feature normalization were 
employed to stabilize learning, reduce sensitivity to 
noise, and improve robustness across varying 
ultrasound image qualities. Throughout the 
training process, performance metrics including 
loss, accuracy, sensitivity, and specificity were 
continuously monitored on both the training and 
validation datasets. Monitoring these metrics 
enabled early detection of divergence, 
underfitting, or overfitting and ensured that the 
learning process remained stable and 
interpretable. Final model parameters were 
selected based on optimal validation accuracy 
combined with consistent loss convergence, rather 
than peak performance at a single epoch, ensuring 
reliability under clinical deployment conditions. 
Table 6 presents a comprehensive summary of the 
training and optimization strategy adopted in this 
study, highlighting the key methodological choices 
and their intended roles. 

 
Table 6: Detailed Summary of Model Training and Optimization Strategy 

Component Description Purpose 
Learning paradigm Supervised deep learning Label-guided feature learning 
Dataset split Training and validation sets Unbiased optimization 
Loss function Cross-entropy loss Probabilistic classification 
Optimization method Gradient-based optimizer with adaptive 

learning rate 
Stable and efficient 
convergence 

Hyperparameter tuning Validation-driven iterative tuning Improved generalization 
Regularization 
techniques 

Dropout and normalization Overfitting prevention 

Early stopping Enabled based on validation loss Training stability 
Model selection Best validation accuracy and loss stability Robust final model 
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This comprehensive training and optimization 
strategy ensured the development of a robust, 
stable, and clinically reliable deep learning model 
for gallbladder ultrasound image analysis. By 
integrating supervised learning, adaptive 
optimization, validation-guided hyperparameter 
tuning, and early stopping, the model achieved 
strong generalization performance while 
remaining resilient to imaging variability. These 
methodological choices provide a solid foundation 
for accurate diagnostic evaluation and support the 
safe translation of deep learning–enabled 
ultrasound screening into real-world clinical 
workflows. 
 
5-         Results and Discussion: 
This prospective diagnostic study evaluated the 
performance and clinical relevance of a deep 
learning–enabled ultrasound framework for 
gallbladder cancer screening in a real-world tertiary 

care setting. After applying predefined eligibility 
criteria and image quality control procedures, the 
final study cohort comprised adult patients 
presenting with suspected gallbladder pathology. 
The cohort reflected the heterogeneous clinical 
spectrum encountered in routine practice, 
including benign gallbladder conditions such as 
cholelithiasis, chronic cholecystitis, and 
gallbladder polyps, as well as cases with confirmed 
or highly suspected gallbladder malignancy. The 
demographic distribution and presenting 
symptoms were consistent with regional 
epidemiological patterns, supporting the external 
validity of the findings. An overview of baseline 
demographic and clinical characteristics of the 
study population is provided in Table 7, which 
summarizes patient age distribution, sex, common 
presenting symptoms, and final diagnostic 
categorization. 

 
Table 7: Baseline demographic and clinical characteristics of the study population 

Characteristic Description 
Age group Adult patients (≥18 years) 
Sex distribution Male and female 
Common presenting symptoms Right upper quadrant pain, dyspepsia, nausea, jaundice 
Benign diagnoses Cholelithiasis, chronic cholecystitis, gallbladder polyps 
Malignant cases Histopathologically or clinically confirmed gallbladder cancer 

 
The proposed convolutional neural network 
demonstrated strong diagnostic capability in 
distinguishing malignant from non-malignant 
gallbladder conditions on the independent test 
dataset. The model achieved high diagnostic 
accuracy with favorable sensitivity and specificity, 
indicating reliable identification of malignant 
lesions while maintaining robust discrimination 
against benign inflammatory changes. Precision 
and F1-score values further confirmed balanced 
performance across classes, while receiver 

operating characteristic analysis showed a high 
area under the curve, reflecting stable separability 
across a wide range of decision thresholds. These 
findings suggest that the model learned clinically 
meaningful morphological and textural features 
rather than relying on spurious correlations. 
Quantitative diagnostic performance metrics of 
the deep learning model are summarized in Table 
8. 

 
Table 8: Diagnostic performance of the deep learning–enabled ultrasound model 

Performance metric Result 
Accuracy 91.6% 
Sensitivity 93.2% 
Specificity 89.4% 
Precision 90.8% 
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F1-score 92.0% 
Area under ROC curve (AUC) 0.94 
 
Receiver operating characteristic analysis further 
illustrated the robustness of the classification 
framework. As shown in Figure 7, the ROC curve 
demonstrates strong discrimination between 
malignant and non-malignant cases across varying 
threshold values, supporting the suitability of the 

model for both screening-oriented high-sensitivity 
use cases and more conservative diagnostic 
scenarios. The high AUC indicates consistent 
performance and effective generalization to 
unseen patient data. 

 

 
Figure 7: Receiver operating characteristic curve. 

 
When compared with routine ultrasound 
interpretation performed by radiologists, the AI-
assisted approach demonstrated superior 
diagnostic performance, particularly in cases 
characterized by subtle or early-stage malignant 
features. Several cases initially interpreted as 
benign inflammatory changes on conventional 
ultrasound were flagged as suspicious by the deep 
learning model and were subsequently confirmed 
as malignant through histopathology or 
longitudinal clinical follow-up. This improvement 
is clinically significant, as early gallbladder cancer 
often presents with minimal morphological 
disruption and substantial overlap with benign 
conditions on ultrasound imaging. The enhanced 
sensitivity of the AI model suggests that deep 
learning–based feature extraction can capture 
nuanced spatial and textural patterns—such as 
focal wall irregularity and early infiltrative growth 

that may be overlooked during routine visual 
assessment. In addition to improved accuracy, the 
deep learning framework demonstrated greater 
consistency across cases, indicating a potential 
reduction in inter-observer variability. 
Conventional ultrasound interpretation is 
inherently subjective and influenced by operator 
experience, workload, and image quality. By 
providing standardized, objective analysis, the AI-
assisted system offers reproducible decision 
support that can complement radiologist expertise 
and harmonize diagnostic outcomes across 
clinicians and clinical settings. This attribute is 
particularly valuable in resource-constrained 
healthcare environments, where access to 
subspecialty expertise may be limited. Further 
insight was gained through qualitative error 
analysis. False-positive predictions were most 
frequently associated with severe inflammatory 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://thesesjournal.com               | Shahzad et al., 2026 | Page 341 

wall thickening and advanced chronic 
cholecystitis, conditions known to closely mimic 
malignant changes on ultrasound [23]. 
Conversely, false-negative cases were primarily 
related to very early-stage lesions with minimal 
structural alteration, underscoring the intrinsic 
difficulty of detecting incipient gallbladder cancer 
using ultrasound alone. These findings highlight 
both the promise and the current limitations of 
AI-assisted ultrasound and point toward 
opportunities for further refinement through 
larger datasets, multi-center validation, and 

incorporation of temporal information from cine 
ultrasound sequences. The clinical workflow and 
interpretability of the proposed system are 
illustrated in Figure 8, which demonstrates how 
deep learning–based analysis integrates with 
conventional ultrasound interpretation to support 
clinical decision-making. Rather than replacing 
the radiologist, the AI system functions as an 
assistive tool that highlights suspicious regions and 
provides probabilistic risk assessment, thereby 
enhancing diagnostic confidence and supporting 
timely referral for further evaluation. 

 

 
Figure 8: Representative learning curves depicting training and validation loss and accuracy across 

epochs, highlighting stable convergence and early stopping during model optimization. 
 
The findings of this study are consistent with 
emerging evidence supporting the role of artificial 
intelligence in ultrasound-based diagnosis across 
hepatobiliary and oncologic imaging domains. 
However, a key distinction of the present work lies 
in its prospective design and real-world clinical 
evaluation. Many prior studies have relied on 
retrospective datasets or highly curated 
experimental conditions, limiting their 
translational relevance. By contrast, this study 

provides prospective clinical evidence derived 
from routine practice, thereby addressing a critical 
gap in the literature on AI-assisted gallbladder 
cancer screening. Despite its strengths, certain 
limitations should be acknowledged. The single-
center design may limit generalizability to other 
populations and imaging environments, and the 
binary classification framework does not capture 
finer pathological subtypes or risk stratification. 
Future work should focus on multi-center 
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validation, incorporation of explainable AI 
techniques to enhance clinician trust, and real-
time deployment within ultrasound systems to 
further improve clinical impact [24]. This 
combined results and discussion demonstrate that 
deep learning–enabled ultrasound imaging can 
significantly enhance the screening and early 
diagnosis of gallbladder cancer. By improving 
diagnostic accuracy, reducing subjectivity, and 
supporting clinical decision-making, the proposed 
AI-assisted framework offers a promising and 
scalable solution for addressing the substantial 
burden of gallbladder cancer, particularly in 
resource-limited healthcare settings where early 
detection is most urgently needed. 
 
6-      Future Work: 
While the findings of this prospective study 
demonstrate the promising clinical utility of deep 
learning–enabled ultrasound imaging for 
gallbladder cancer screening, several avenues for 
future research remain to further enhance 
robustness, generalizability, and clinical impact. 
One important direction involves multi-center 
and multi-population validation of the proposed 
framework. Expanding the study across different 
hospitals, geographic regions, and ultrasound 
systems would allow assessment of model 
performance under diverse imaging conditions 
and patient demographics, thereby strengthening 
external validity and facilitating broader clinical 
adoption. Future work should also focus on the 
integration of explainable artificial intelligence 
(XAI) techniques into the diagnostic framework 
[25]. Although the current model demonstrates 
strong classification performance, incorporating 
visualization methods such as attention maps or 
class activation mapping would enable clinicians 
to better understand which image regions drive 
model predictions. Improved interpretability is 
essential for building clinician trust, supporting 
regulatory approval, and ensuring safe deployment 
in high-stakes diagnostic environments such as 
cancer screening. Another promising extension is 
the transition from binary classification to multi-
class disease characterization and risk 
stratification. Differentiating between specific 
benign conditions, premalignant lesions, and 

varying stages of gallbladder cancer could provide 
more granular diagnostic insights and support 
personalized clinical decision-making [26]. 
Additionally, integrating temporal information 
from ultrasound cine sequences rather than 
relying solely on static images may further improve 
detection of subtle morphological changes 
associated with early malignancy. From a clinical 
workflow perspective, future studies should 
explore real-time implementation of AI-assisted 
analysis within ultrasound systems. Embedding 
the model directly into scanning workflows could 
enable on-the-fly decision support, assist less-
experienced operators, and streamline referral 
pathways for high-risk patients. Prospective studies 
evaluating the impact of real-time AI assistance on 
diagnostic confidence, reporting time, and patient 
outcomes would provide valuable evidence for 
routine clinical deployment [27]. Finally, 
combining ultrasound-based deep learning models 
with clinical, laboratory, and demographic data 
represents an important direction for holistic risk 
assessment. Multimodal models that incorporate 
imaging features alongside patient history and 
biochemical markers may further enhance 
diagnostic accuracy and predictive performance. 
Such integrated approaches could ultimately 
support comprehensive, low-cost screening 
strategies for gallbladder cancer, particularly in 
resource-limited healthcare settings [28]. Future 
research focused on multi-center validation, 
explainability, workflow integration, and 
multimodal learning has the potential to further 
advance AI-driven gallbladder cancer screening 
and accelerate its translation from research to 
routine clinical practice. 
 
Conclusion: 
This study presents a prospective clinical 
evaluation of a deep learning–enabled ultrasound 
framework for the screening and diagnosis of 
gallbladder cancer in a real-world tertiary care 
setting. By integrating standardized ultrasound 
acquisition, expert radiological annotation, and a 
convolutional neural network–based analysis 
pipeline, the proposed approach addresses key 
limitations of conventional ultrasound 
interpretation, particularly operator dependence 
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and reduced sensitivity for early-stage disease. The 
findings demonstrate that AI-assisted ultrasound 
imaging can significantly enhance diagnostic 
accuracy and consistency in distinguishing 
malignant from non-malignant gallbladder 
conditions. The deep learning model achieved 
strong performance across multiple evaluation 
metrics and consistently outperformed routine 
ultrasound assessment, especially in cases with 
subtle or early malignant features that are 
frequently overlooked in conventional practice. 
These results highlight the ability of data-driven 
feature learning to capture nuanced 
morphological and textural patterns beyond 
human visual perception. Importantly, this work 
provides prospective clinical evidence supporting 
the feasibility and clinical value of integrating 
artificial intelligence into ultrasound-based 
gallbladder cancer screening workflows. The use of 
institution-specific data, robust reference 
standards, and patient-level evaluation strengthens 
the translational relevance of the study and 
supports potential adoption in routine practice. In 
resource-constrained healthcare environments, 
where access to advanced imaging modalities is 
limited, AI-assisted ultrasound offers a scalable 
and cost-effective strategy to improve early 
detection and diagnostic equity. While further 
multi-center validation and real-time 
implementation are warranted, the results of this 
study underscore the transformative potential of 
deep learning in hepatobiliary imaging. By 
enhancing early diagnosis, reducing diagnostic 
subjectivity, and supporting clinical decision-
making, deep learning–enabled ultrasound 
imaging represents a promising tool for improving 
patient outcomes and addressing the substantial 
burden of gallbladder cancer. 
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