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Abstract
Gallbladder cancer (GBC) remains one of the most aggressive hepatobiliary
malignancies, largely due to late-stage diagnosis and the absence of reliable, non-

invasive screening strategies, particularly in low- and middleincome countries.
Conventional ultrasound imaging is widely used as a firstline diagnostic
modality; howeuver, its effectiveness is highly operator-dependent and limited in
detecting earlystage malignant changes. This study aims to evaluate the clinical
utility of deep learning—enabled ultrasound imaging for the early screening and
diagnosis of gallbladder cancer in a realaworld tertiary care setting. A prospective
diagnostic study was conducted at Ayub Teaching Hospital, Abbottabad,
Pakistan, involving patients presenting with suspected gallbladder pathology.
Ultrasound images were acquired using standardized imaging protocols and
annotated by experienced radiologists. A deep learning framework based on
convolutional neural networks was developed to automatically analyze
ultrasound images and classify gallbladder lesions into malignant and non-
malignant categories. The model was trained, validated, and tested using
institution-specific datasets to ensure clinical relevance and robustness. Diagnostic
performance was assessed using accurdcy, sensitivity, specificity, precision, F1-
score, and area under the receiver operating characteristic curve (AUC), with
histopathology and expert consensus serving as reference standards. The proposed
deep learning model demonstrated strong diagnostic performance, achieving high
sensitivity and specificity in differentiating gallbladder cancer from benign
conditions such as cholelithiasis and chronic cholecystitis. Notably, the Al-assisted
system showed improved detection of subtle morphological features that are often
overlooked in conventional ultrasound interpretation. Comparative analysis
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revealed that the deep learning—enabled approach outperformed routine
ultrasound assessment, particularly in early-stage disease identification. The

model also exhibited consistent performance across varying image qualities,
highlighting its potential to reduce inter-observer wvariability and diagnostic

subjectivity. This study provides prospective clinical evidence supporting the

integration of deep learning—powered ultrasound imaging into gallbladder cancer

screening workflows. The findings suggest that Al-assisted ultrasound can enhance

diagnostic accuracy, facilitate early detection, and support clinical decision-

making in resource-constrained healthcare environments. Adoption of such

intelligent diagnostic systems may significantly improve patient outcomes through

timely intervention and personalized management. Future work will focus on

multi-center validation, explainable Al integration, and real-time deployment to

further advance Al-driven gallbladder cancer screening.

1- Introduction:

Gallbladder cancer (GBC) is one of the most
aggressive malignancies of the hepatobiliary system
and is associated with exceptionally poor survival
outcomes. Although relatively uncommon
worldwide, its incidence demonstrates
pronounced  geographic  variability,  with
disproportionately high disease burden reported
in South Asia, Latin America, and parts of Eastern
Europe. In Pakistan, gallbladder cancer constitutes
a significant clinical concern due to delayed
presentation, limited access to advanced
diagnostic modalities, and frequent coexistence
with benign gallbladder diseases such as
cholelithiasis and chronic cholecystitis. The
overall five-year survival rate remains extremely
low, largely because the majority of patients are
diagnosed at advanced stages when curative
surgical resection is no longer feasible. Early
detection is the most critical determinant of
prognosis in gallbladder cancer; however,
achieving this remains clinically challenging [1]. In
its initial stages, GBC is often asymptomatic or
presents with vague, non-specific symptoms that
closely resemble benign biliary disorders. Imaging
therefore plays a central role in screening and
diagnostic Among
modalities, ultrasound imaging is widely used as
the first-line diagnostic tool due to its non-invasive
nature, affordability, lack of ionizing radiation,
and widespread availability particularly in low- and
middle-income countries. Ultrasound is routinely
employed to assess gallbladder wall thickness,
intraluminal masses, polyps, and gallstones, which

evaluation. available

are key features associated with both benign and
malignant conditions. Despite its widespread use,
conventional ultrasound has notable limitations
in the early detection of gallbladder malignancy.
Diagnostic accuracy is highly dependent on
operator expertise, image acquisition quality, and
subjective  interpretation. Subtle malignant
features such as focal wall irregularity, early
infiltrative growth, and minimal mucosal
disruption are frequently overlooked or
misinterpreted as inflammatory changes [2].
Moreover, considerable inter-observer variability
exists among radiologists, further reducing
diagnostic ~ consistency.  These limitations
underscore the urgent need for robust, objective,
and reproducible screening strategies that can
enhance early detection while remaining feasible
in resource-constrained healthcare environments.
Recent advances in artificial intelligence (Al),
particularly deep learning, have transformed
medical image analysis by enabling automated,
data-driven feature extraction and classification.
Convolutional neural networks (CNNs) have
demonstrated exceptional performance across
multiple  imaging  modalities,  including
radiography, computed tomography, magnetic
resonance imaging, and ultrasound. In ultrasound
imaging, deep learning models are particularly
valuable because they can learn complex spatial
and textural patterns from noisy and operator-
dependent data, thereby reducing subjectivity and
improving diagnostic  reliability.  Al-assisted
ultrasound systems have shown promise in
detecting subtle morphological changes that may
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not be readily apparent during routine visual
assessment. However, despite the growing body of
research on Al in medical imaging, evidence
supporting the clinical application of deep
learning for gallbladder cancer screening remains
limited [3]. Most published studies are
retrospective, rely on small or highly curated
datasets, and are conducted in controlled
experimental settings that may not reflect routine
clinical practice. Furthermore, there is a notable

lack of prospective diagnostic studies from low-
and middle-income countries, where ultrasound
remains the primary imaging modality and where
Al-driven solutions could have the greatest impact.
To contextualize the diagnostic challenges and
highlight the motivation for Al integration, Table
1 summarizes the key limitations of conventional
ultrasound-based gallbladder cancer screening and
the potential advantages offered by deep learning-
enabled approaches.

Table 1: Comparison of Conventional Ultrasound and Deep Learning-Enabled Ultrasound for

Gallbladder Cancer Screening

Aspect Conventional Ultrasound Deep Learning-Enabled Ultrasound
Operator dependence Highly operator-dependent Reduced dependence through automated
analysis
Detection of early-stage Limited sensitivity for subtle Enhanced sensitivity via learned feature
disease lesions representations
Inter-observer variability High variability among Improved consistency and reproducibility
radiologists

Feature interpretation

Visual assessment of obvious

Automated identification of subtle

features morphological patterns
Scalability in low-resource | Widely available but Scalable decision support with consistent
settings inconsistent accuracy performance
Clinical decision support | Primarily qualitative Quantitative, Al-assisted diagnostic
guidance
In this context, the present study aims to evaluate 2- Artificial Intelligence and Deep

the clinical utility of deep learning-enabled
ultrasound imaging for the early screening and
diagnosis of gallbladder cancer through a
prospective diagnostic study conducted at Ayub
Teaching Hospital, Abbottabad, Pakistan. By
integrating standardized ultrasound acquisition
protocols with a convolutional neural network-
based analysis framework, this study seeks to
determine whether Al-assisted ultrasound can
outperform routine clinical assessment in
distinguishing malignant from non-malignant
gallbladder conditions. The findings are intended
to provide prospective clinical evidence
supporting the adoption of Al-driven diagnostic
support systems to improve early detection, reduce
diagnostic subjectivity, and enhance patient
healthcare

outcomes in  resourcelimited

environments.

Learning in Medical Imaging:

Artificial intelligence (AI) has emerged as one of
the most disruptive and transformative
technologies in modern medical imaging,
fundamentally  altering  how  diagnostic
information is extracted, interpreted, and utilized
in clinical practice. Early computer-aided diagnosis
(CAD) systems were primarily based on
handcrafted feature extraction and rule-based
classifiers, which relied heavily on expert-defined
thresholds and prior assumptions about image
characteristics. ~ Although  these  systems
demonstrated limited success in  specific
applications, their performance was constrained
by poor generalizability, sensitivity to noise, and an
inability to capture complex, non-linear
relationships inherent in medical imaging data.
The advent of deep learning, particularly
convolutional neural networks (CNNs), has

https://thesesjournal.com

| Shahzad et al., 2026 |

Page 326


https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

Volume 4, Issue 2, 2026

revolutionized medical image analysis by enabling
end-to-end learning directly from raw image data.
CNNs are specifically designed to process grid-like
data structures, making them highly effective for
imaging tasks. Through stacked convolutional
layers, pooling operations, and non-linear
activations, CNNs automatically learn hierarchical
feature representations ranging from low-level
edges and textures to high-level semantic and
anatomical patterns [4]. This hierarchical learning
capability allows deep learning models to identify
subtle morphological and textural variations that
may be imperceptible to the human eye, especially
in early disease stages. Deep learning techniques
have achieved remarkable success across a wide
spectrum of medical imaging modalities, including
radiography, computed tomography (CT),
magnetic resonance imaging (MRI), positron
emission tomography (PET), and ultrasound. In
radiology, CNN-based models have demonstrated
expertlevel performance in detecting lung
nodules, breast lesions, intracranial hemorrhage,
and musculoskeletal abnormalities. In oncology,
deep learning has enabled automated tumor
segmentation, staging, and treatment response
assessment, contributing to more precise and
personalized patient management. These advances
have positioned Al not merely as an auxiliary tool,
but as an integral component of next-generation
diagnostic workflows. A major advantage of deep
learning in medical imaging lies in its ability to
reduce inter-observer variability and diagnostic
subjectivity. Human interpretation of medical
images is influenced by experience, training
background, workload, and cognitive bias, often
resulting in inconsistent diagnostic outcomes
across clinicians [5]. Al-driven systems, by contrast,
provide standardized and reproducible analyses,
offering consistent decision support across
different clinical settings. This consistency is

particularly valuable in screening and triage
applications, where large volumes of images must
be interpreted rapidly and accurately. In addition
to improving diagnostic accuracy, deep learning
enables the extraction of quantitative imaging
biomarkers that extend beyond conventional
visual assessment. These data-driven biomarkers
capture information related to lesion shape,
texture heterogeneity, intensity distributions, and
spatial relationships, facilitating more
comprehensive disease characterization. Such
quantitative insights support early disease
detection, risk stratification, and longitudinal
monitoring. Importantly, deep learning models
are capable of learning robust representations even
in noisy or low-quality images, making them well
suited for realworld clinical environments.
Ultrasound imaging represents a particularly
challenging domain for automated analysis due to
speckle noise, operator-dependent acquisition,
and variability in probe orientation and image
quality [6]. Despite these challenges, deep learning
has demonstrated strong potential in ultrasound-
based applications, including breast lesion
classification, liver fibrosis staging, thyroid nodule
detection, fetal anomaly screening, and vascular
assessment. CNNs trained on ultrasound data
have shown resilience to image artifacts and
variability, outperforming traditional machine
learning approaches and achieving performance
comparable to experienced radiologists. These
characteristics make deep learning especially
attractive for ultrasound-based screening in low-
and middle-income countries, where ultrasound
remains the most accessible imaging modality.
Table 2 provides a conceptual comparison
between traditional CAD systems and deep
learning-based medical imaging approaches,
highlighting the methodological and clinical
advantages introduced by modern Al techniques.

Table 2: Evolution of Computer-Aided Diagnosis toward Deep Learning-Based Medical Imaging

Dimension

Traditional CAD Systems

Deep Learning-Based Systems

Feature design

Handcrafted by experts

Automatically learned from data

Model complexity

Limited, linear or shallow

Highly non-linear, deep architectures

Sensitivity to noise High

Relatively robust

Adaptability across datasets Poor

Improved with data diversity
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Inter-observer variability Not addressed Significantly reduced
Clinical scalability Limited High scalability and automation
Suitability for screening Moderate Highly suitable for large-scale screening
Despite these advantages, the clinical deployment contribute most strongly to diagnostic decisions
of deep learning systems in medical imaging [7]. These approaches enhance clinician trust and
requires careful consideration of transparency, support safe adoption of Al in routine practice.
interpretability, and clinical integration. Black-box Figure 2 illustrates a generalized deep learning-
decision-making has raised concerns among enabled medical imaging workflow, depicting how
clinicians and regulatory bodies, prompting raw imaging data are transformed into clinically
increased interest in explainable Al (XAI) actionable insights through automated feature
techniques. Methods such as class activation extraction and classification. This framework
mapping, attention mechanisms, and saliency emphasizes the role of Al as a decision-support
visualization provide intuitive insights into model system that augments clinical expertise rather than
predictions by highlighting image regions that replacing it.
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Figure 1: Conceptual workflow of deep learning-enabled medical imaging.
Artificial intelligence and deep learning have particularly in diseases such as gallbladder cancer
ushered in a paradigm shift from subjective, where early diagnosis is challenging yet critical. By
experience-driven  image interpretation  to leveraging deep learning-enabled medical
objective, data-driven diagnostic analysis. These imaging, healthcare systems can move toward
advances provide a strong technological more accurate, consistent, and scalable diagnostic
foundation for Al-assisted screening strategies, solutions, ultimately improving patient outcomes
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in both high-resource and resource-constrained
settings.

3- Role of Ultrasound Imaging in
Gallbladder Cancer Detection:

Ultrasound imaging is the most widely used first-
line diagnostic modality for the evaluation of
gallbladder pathology in routine clinical practice.
Its non-invasive nature, absence of ionizing
radiation, real-time imaging  capability,
affordability, and broad availability —make
ultrasound  particularly suitable for initial
assessment in both high-resource and resource-
constrained healthcare settings. In countries such
as Pakistan, where access to advanced imaging
modalities may be limited, ultrasound serves as the
primary screening and diagnostic tool for patients
presenting with suspected hepatobiliary disease.
Clinically, ultrasound is routinely employed to
evaluate gallstones, gallbladder wall thickness,
intraluminal masses, polyps, sludge, and
pericholecystic changes [8]. Certain ultrasound
features such as a mass replacing the gallbladder,
marked irregular wall thickening, or invasion into
adjacent liver tissue are well-recognized indicators
of advanced gallbladder malignancy. Multiple
studies have demonstrated that ultrasound can
identify late-stage gallbladder cancer with
reasonable diagnostic accuracy when overt
morphological abnormalities are present. As a
result, ultrasound plays a critical role in the initial
detection and referral of patients with suspected
advanced disease. Despite its clinical utility, the
role of ultrasound in detecting early-stage
gallbladder cancer remains limited [9]. Early
malignant changes often manifest as subtle
findings, including focal or asymmetric wall
thickening, minimal mucosal irregularity, or small

intraluminal lesions. These features frequently
overlap with benign conditions such as chronic
cholecystitis,
inflammatory wall changes associated with
gallstones. Consequently, early gallbladder cancer
is commonly misclassified as benign disease,
leading to delayed diagnosis and missed
opportunities for curative surgical intervention.
Another major limitation of conventional

adenomyomatosis, and

ultrasound lies in its operator dependence. Image
acquisition quality is influenced by factors such as
probe positioning, scanning angle, patient body
habitus, and bowel gas interference. Furthermore,
image interpretation is largely subjective and
dependent on the radiologist’s experience and
expertise. This subjectivity contributes to
significant inter-observer variability, particularly
when evaluating borderline or indeterminate
findings. Differences in training and workload can
further exacerbate inconsistency in diagnostic
outcomes, especially in high-volume clinical
settings. In addition, ultrasound image quality can
vary substantially across examinations due to
differences in equipment, acquisition parameters,
and patientrelated factors [10]. Variability in
image contrast, resolution, and noise levels can
obscure subtle pathological features, further
reducing diagnostic confidence. These challenges
limit the reliability of ultrasound as a standalone
screening tool for early gallbladder cancer and
highlight the need for objective, reproducible
methods to assist clinicians in image
interpretation. Table 3 summarizes the key
strengths and limitations of conventional
ultrasound imaging in the context of gallbladder
cancer detection, emphasizing the diagnostic gaps
that persist in early-stage disease.

Table 3: Strengths and Limitations of Conventional Ultrasound in Gallbladder Cancer Detection

Aspect Strengths Limitations
Accessibility Widely available and low Limited access to high-end systems in some
cost settings
Safety Non-invasive and radiation- | Operator fatigue can affect performance
free

Detection of advanced
disease malignancy

Good sensitivity for overt

Poor sensitivity for early-stage disease
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Lesion characterization Effective for large masses Difficulty distinguishing benign vs malignant

and stones subtle changes

Operator dependence Flexible and real-time High inter-observer variability

Diagnostic consistency Rapid initial assessment Subjective interpretation and inconsistency
Given  these limitations, ultrasound-based and affordability has therefore become a key
gallbladder cancer screening remains heavily research priority. Figure 2 illustrates typical
reliant on clinician expertise, and early malignant ultrasound appearances of gallbladder pathology,
lesions are frequently overlooked. This diagnostic highlighting the visual overlap between benign
gap is particularly problematic in regions with high inflammatory conditions and early malignant
gallbladder cancer incidence, where early changes. This overlap underscores the inherent
detection could substantially improve survival difficulty of relying solely on conventional visual
outcomes. Enhancing the diagnostic capability of assessment for early cancer detection.

ultrasound without compromising its accessibility

1] —-1 Selecton of Searce Subjects Modakity Alignment Lagends
ol e] PR Eathinane Selevied - Vet dsia b
- - v sarralatey sonre sahjects = .Lu) !!- = e sl maaity
> — q - @ = L) DN P § 5905 Souwes Gl
- ¥ | .’. LA Merpr Scume || =1 - o _-l\———‘. o2 8 amg Module > & " £, dgs
» | B BN P ! | ' . > _ i Cnes daet
gt u r 4 ' 1 b ity
| | Vissal wmrteshngs —1- *-: c, RWALTP vl I'E\" Iy o S
W o g . 400 ¥ o i = e [ S R BT P S T Ui
wer [ LI O ) o o | | |— o
‘ Pt prvdodh fige Rk o Fot-o Barell Lty % Source duss e
| » . 'y
' Lyt T D LR &
| Modality Aligmment
1 - Ly o Z 7 < Generation of Target 'La R
R oo =] [ jrovomcny VP
— e Z z e | o # sl YO e - Ui Abgument
Scuarve v z, ‘ \ L s r
- Ja—— ‘ =M et U B L & |
7z { || <Y, | T pr'yl) Ll €2 D L vy LD
o Oslibbaciiler ' | = Fo ot ¥ “TY & Su - = ‘
Somn # - " v Cyy t—t—o+ . - \
{ 2 [T TP
Canfidence Welghted ‘ Poenale € lesaifiors '[
Suet (g z . Calibeatine X f y - y . : Dissale)
o [“'"’ Gallhlatbites -+ '. » g o Do L AL ;: s Vs o bl |
~ » = W, = man(Py e {PYS f———— { Ve - o o A0 1% S " Da
| | i v [T _ L
il / .‘l",.. lo 2Ty} e Cl o) o o P |
= * T - o |
1 B by Convelgent [ he | ~ | ] =
Tarpnt Lg ’"’""‘f""‘ Z., ACYE LA { x - r’l)', e Comiitonce- wighted oo, : > :_1);' — D,
v e senficdenn 8 by, i
mgtes 1) > r— Domain Alignmest
Figure 2: Representative ultrasound appearances of gallbladder pathology.
While ultrasound remains indispensable as a first- workflows to enhance accuracy, consistency, and
line imaging modality for gallbladder evaluation, early detection of gallbladder cancer.
its limitations in early-stage cancer detection,
operator dependence, and diagnostic subjectivity 4- Methodology:
restrict its effectiveness as a standalone screening This study was designed as a prospective diagnostic
tool. These challenges provide a strong clinical accuracy investigation aimed at evaluating the
rationale for integrating advanced computational clinical utility of deep learning-enabled
approaches such as artificial intelligence and deep ultrasound imaging for the screening and
learning into  ultrasound-based  diagnostic diagnosis of gallbladder cancer within a real-world
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tertiary care environment. The proposed
methodology integrates standardized ultrasound
image acquisition protocols, expert radiological
interpretation, and a convolutional neural
network (CNN)-based deep learning framework
to facilitate automated, data-driven analysis of
gallbladder ultrasound images. By employing a
prospective study design, the investigation ensures
strong clinical relevance, reduces selection and
information bias, and accurately reflects routine
diagnostic workflows encountered in everyday
clinical practice [11]. Model development,
training, validation, and testing were performed
using institution-specific datasets to capture local
population characteristics and imaging variability.
Histopathological =~ findings  from  surgical
specimens or biopsies were used as the primary
reference standard whenever available, while
expert radiological consensus supported by clinical
follow-up served as an alternative reference in non-
surgical cases. The diagnostic performance of the
proposed Al-assisted system was systematically
evaluated using established quantitative metrics,
including  accuracy, sensitivity, specificity,
precision, Fl-score, and area under the receiver
operating characteristic curve (AUC), and was
directly compared with conventional ultrasound
interpretation to determine the added clinical
value of deep learning-based decision support.

4.1 Study Population and Patient
Recruitment:

This prospective diagnostic study enrolled
consecutive adult patients presenting to the
radiology department with clinical suspicion of
gallbladder pathology during the defined study
period. A consecutive recruitment strategy was
deliberately employed to minimize selection bias
and to ensure that the study population accurately
represented the spectrum of patients encountered
in routine tertiary care practice. By avoiding
selective sampling, the study aimed to capture real-
world variability in disease presentation, imaging
quality, and clinical complexity, thereby
enhancing the external validity and generalizability
of the findings. Patients were referred for
abdominal ultrasound examination from both
outpatient and inpatient services based on clinical

indications suggestive of hepatobiliary disease [12].
Common presenting symptoms included right
upper quadrant abdominal pain, dyspepsia,
nausea, vomiting, jaundice, unexplained weight
loss, and abnormal liver function tests. In addition
to symptomatic individuals, patients with
incidentally detected gallbladder abnormalities on
prior imaging studies or routine health evaluations
were also considered eligible. This inclusive
approach enabled the recruitment of a
heterogeneous cohort encompassing benign
gallbladder conditions, premalignant changes, and
suspected malignant lesions, which is essential for
evaluating  diagnostic  discrimination in a
screening-oriented context. Eligibility criteria were
carefully defined to ensure diagnostic validity and
data quality. Inclusion was restricted to adults (>18
years) undergoing abdominal ultrasound with a
native gallbladder in situ. Patients with a
previously established diagnosis of gallbladder
cancer were excluded to prevent incorporation
bias, as prior knowledge of malignancy could
artificially  inflate  diagnostic = performance.
Individuals who had undergone prior gallbladder
surgery, including cholecystectomy, were excluded
due to altered anatomy and the absence of
evaluable gallbladder tissue [13]. Furthermore,
cases with incomplete demographic or clinical
information, missing imaging data, or ultrasound
images of insufficient quality such as those
affected by severe motion artifacts or inadequate
gallbladder visualization were excluded to
maintain analytical ~ robustness. Before
participation, all eligible patients provided written
informed consent after receiving a detailed
explanation of the study objectives, data usage
procedures, and confidentiality safeguards.
Participants were informed that the deep learning
system functioned solely as a research-based
decision-support tool and did not influence
clinical diagnosis or management during the study
period.  Ethical principles of autonomy,
confidentiality, and data protection were strictly
upheld throughout recruitment and data
handling. Comprehensive demographic and
clinical information was systematically recorded
for each participant, including age, sex, presenting
symptoms, relevant medical history, and known
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gallstones,  chronic
cholecystitis, or metabolic comorbidities. These

variables were collected to enable subgroup

risk  factors such as

ultrasound appearance and Al model predictions.
Table 4 presents a detailed summary of the
inclusion and exclusion criteria applied during

analyses, facilitate interpretation of diagnostic patient recruitment, providing clarity and
performance across patient categories, and assess transparency regarding study eligibility.
potential  confounding factors influencing
Table 4: Eligibility Criteria for Patient Recruitment
Criterion Eligible | Not Eligible
Age > 18 years v X
Undergoing abdominal ultrasound for suspected gallbladder pathology v X
Presence of biliary symptoms (RUQ pain, dyspepsia, nausea, vomiting, jaundice) | X
Incidental gallbladder abnormality on prior imaging v X
Previously diagnosed gallbladder cancer X v
History of gallbladder surgery (e.g., cholecystectomy) X v
Complete clinical and demographic data available v X
Diagnostic-quality ultrasound images v X

To further enhance methodological transparency,
Figure 3 illustrates the structured patient
recruitment and selection workflow, depicting the

progression from initial patient presentation to
final inclusion in the analytical dataset.
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criteria, informed consent acquisition, and final inclusion of participants in the prospective diagnostic
study.
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This  structured and ethically grounded
recruitment strategy ensured the development of a
representative and clinically meaningful study
cohort. By capturing the full spectrum of
gallbladder pathology encountered in routine
practice, the study population provides a robust
foundation for evaluating the real-world
diagnostic performance of deep learning-enabled
ultrasound imaging for gallbladder cancer
screening and early detection.

4.2- Ultrasound Image Acquisition
Protocol:

Ultrasound image acquisition was performed
using standard clinical ultrasound systems
routinely employed at the study site for abdominal
and hepatobiliary imaging. Ultrasound was
selected as the primary imaging modality due to its
widespread availability, non-invasive nature, real-
time imaging capability, and established role as the
first-line diagnostic tool for gallbladder pathology.
To ensure methodological consistency and reduce
inter-examination variability, a standardized
ultrasound acquisition protocol was implemented
across all enrolled patients [14]. All examinations
were conducted by trained sonographers and
consultant radiologists with experience in
abdominal ultrasound imaging, following routine
clinical ~practice guidelines. Patients were
examined after appropriate fasting whenever
feasible to optimize gallbladder distension and
visualization. Scans were performed using low-
frequency curvilinear transducers suitable for
abdominal imaging, with machine settings
including gain, depth, and focal zones adjusted to
achieve optimal image quality while maintaining
consistency across examinations. The gallbladder

was systematically evaluated in multiple imaging
planes, including longitudinal, transverse, and
oblique views, to ensure comprehensive
anatomical assessment. Particular attention was
given to visualization of the gallbladder wall
thickness, lumen contents, intraluminal masses,
polyps, gallstones, and pericholecystic regions.
Adjacent hepatic tissue was also assessed to
identify possible local invasion or secondary
changes. This multi-plane acquisition strategy was
adopted to minimize the risk of missing focal or
asymmetric lesions that may not be apparent in a
single view. Both static images and short cine loops
were acquired to capture representative findings
and dynamic features such as lesion mobility and
acoustic shadowing. Images demonstrating key
pathological features such as focal wall irregularity,
asymmetric thickening, intraluminal masses, or
suspicious echogenic patterns were preferentially
stored [15]. All ultrasound data were digitally
archived in the hospital imaging system in
standard formats, ensuring traceability and
compatibility with subsequent deep learning
analysis. To support reliable Al model
development, only images that met predefined
quality criteria adequate gallbladder visualization,
minimal motion artifacts, and sufficient contrast
resolution were retained for further processing.
This approach ensured that the dataset accurately
reflected realworld clinical imaging while
maintaining analytical robustness. To provide a
visual overview of the acquisition process, Figure 4
illustrates the wultrasound image acquisition
workflow, from patient preparation and scanning
to image storage and selection for Al-based
analysis.
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Figure 4: Schematic representation of the ultrasound image acquisition.

The implementation of a standardized ultrasound
image acquisition protocol ensured consistency,
reproducibility, and high-quality imaging across
the study cohort. This structured approach
provided a reliable foundation for subsequent
image annotation, deep learning model
development, and diagnostic = performance
evaluation, while closely reflecting routine clinical
practice in a real-world tertiary care environment.

4.3- Dataset Preparation and
Preprocessing:

Following ultrasound image acquisition and
expert annotation, a comprehensive dataset
preparation and preprocessing pipeline was
implemented to ensure high data quality,
consistency, and suitability for deep learning-
based analysis. Ultrasound imaging is inherently
susceptible to variability arising from operator
technique, patient anatomy, probe orientation,
and machine-dependent acquisition settings.
Therefore, careful dataset curation and

preprocessing were considered essential to
mitigate noise, reduce bias, and enable robust
model learning. The initial dataset curation phase
involved systematic quality assessment of all
collected ultrasound images [16]. Images were
reviewed to identify and exclude those with
inadequate gallbladder visualization, excessive
speckle noise, motion artifacts, shadowing that
obscured key anatomical structures, or incomplete
coverage of the gallbladder lumen and wall.
Additionally, duplicate images and scans with
missing or inconsistent metadata were removed.
This quality control process ensured that only
diagnostically meaningful images representative of
real clinical practice were retained for subsequent
analysis. After quality filtering, standardized
preprocessing operations were applied to the
curated dataset. All ultrasound images were resized
to a fixed spatial resolution to ensure uniform
input dimensions for the deep learning model and
to facilitate batch-based processing during
training. Pixel intensity normalization and scaling
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were performed to reduce variability caused by
differences in ultrasound equipment, gain
settings, and patientrelated factors. These
normalization steps improved numerical stability
during optimization and enhanced convergence
behavior during model training. To further
strengthen model generalization and reduce the
risk of overfitting, data augmentation techniques
were selectively applied to the training dataset.
Augmentation strategies included controlled
random rotations, horizontal flipping, brightness
and contrast adjustment, and minor geometric
transformations. These techniques simulated
realistic variations in probe orientation, patient
positioning, and imaging conditions while
preserving diagnostic integrity. Importantly,
augmentation was applied only to the training
subset to avoid introducing artificial bias into

validation and testing datasets [17]. Given the
longitudinal and patient-centric nature of
ultrasound examinations, the dataset was divided
into training, validation, and testing subsets at the
patient level rather than the image level. This
patient-wise partitioning strategy prevented data
leakage by ensuring that images from the same
individual did not appear across multiple subsets.
Such strict separation is critical for unbiased
performance evaluation and realistic assessment of
generalization to unseen patients. The training set
was used for model learning, the validation set for
hyperparameter tuning and early stopping, and
the independent test set for final diagnostic
evaluation. Table 5 summarizes the detailed
dataset preparation and preprocessing steps
employed in this study, along with their respective
objectives and contributions to model robustness.

Table 5: Comprehensive Dataset Preparation and Preprocessing Pipeline

Stage Methodology

Objective

Data curation
images

Removal of low-quality, incomplete, and duplicate | Ensure diagnostic reliability

Quality assessment
visualization

Exclusion of motion artifacts and poor

Improve label fidelity

Image resizing

Standardized spatial resolution

Uniform model input

Intensity
normalization

Pixel scaling and normalization

Reduce inter-machine

variability

Data augmentation
adjustment

Rotation, flipping, brightness/contrast

Enhance generalization

Dataset splitting

Patient-level train/validation/test partitioning

Prevent data leakage

Final dataset

Curated and standardized ultrasound images

Robust model development

To provide a clear visual overview of the dataset
handling process, Figure 5 illustrates the complete
preprocessing ~ workflow,  highlighting  the

transformation from raw ultrasound images to
standardized datasets used for deep learning
model training and evaluation.
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Figure 5: Schematic representation of the dataset

This comprehensive dataset preparation and
preprocessing strategy ensured the creation of a
high-quality, standardized, and diverse ultrasound
dataset suitable for deep learning-based
gallbladder cancer screening. By addressing
ultrasound-specific challenges, enforcing strict
patientlevel data separation, and enhancing data
diversity through augmentation, the study
established a robust methodological foundation
for reliable model training, validation, and testing.
This rigorous approach strengthens the credibility,
reproducibility, and clinical relevance of the
proposed Al-assisted diagnostic framework.

4.4 Deep Learning Model Architecture:

A convolutional neural network (CNN)-based
deep learning framework was developed to enable
automated analysis and classification  of
gallbladder ultrasound images. CNNs were
selected due to their proven effectiveness in
medical image interpretation, particularly for
ultrasound data characterized by speckle noise,
variable contrast, and operator-dependent
acquisition. The proposed architecture was
designed to learn discriminative morphological
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preparation and preprocessing workflow.

and textural features directly from raw ultrasound
images, eliminating the need for handcrafted
feature extraction and enabling end-to-end
optimization. The network architecture follows a
hierarchical feature learning paradigm, in which
convolutional layers progressively
extract increasingly abstract image representations
[18]. Initial convolutional layers focus on low-level
features such as edges, contours, and local texture
variations, while deeper layers capture higher-level
semantic patterns related to gallbladder wall
irregularity, intraluminal masses, asymmetric
thickening, and heterogeneous echogenicity.
These characteristics are clinically relevant
indicators for distinguishing malignant from non-
malignant  gallbladder  conditions.  Each
convolutional block consists of convolutional
filters followed by non-linear activation functions
to introduce model expressiveness and enable
learning of complex non-inear relationships.

successive

Pooling layers are interleaved between
convolutional ~ blocks to  reduce  spatial
dimensionality, control computational

complexity, and enhance translation invariance.
This design allows the network to focus on
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diagnostically relevant structures while remaining
robust to minor spatial variations in lesion
appearance and probe positioning. To mitigate
overfitting. and  improve  generalization,
regularization strategies were incorporated into
the architecture. These included dropout layers to
prevent  co-adaptation of neurons and
normalization layers to stabilize gradient
propagation during training [19]. Fully connected
layers at the final stages of the network aggregate
the learned features and perform high-level
reasoning, ultimately producing probabilistic
outputs corresponding to malignant and non-
malignant classes through a softmax or sigmoid
activation function. The architecture was
deliberately optimized for binary classification,
reflecting the primary clinical objective of
screeninglevel discrimination between malignant
and benign gallbladder pathology. By focusing on

Input image
maps

feature maps
e
i

Filter

Convolution and Pooling

activation activation

Input layer

Feature maps  Pooled feature  Pooled feature maps

/
[ Pooled Featuremaps  Vectlemings}

Convolution and  Pooling

Convolutional layers

this clinically meaningful dichotomy, the model
prioritizes sensitivity to early malignant changes
while maintaining specificity for common benign
conditions such as cholelithiasis and chronic
cholecystitis. To enhance transparency and
interpretability, the architecture was designed to
be compatible with explainable Al techniques,
such as class activation mapping and attention
visualization. These methods enable visualization
of image regions that contribute most strongly to
model  predictions,  supporting  clinical
interpretability and facilitating trust among
radiologists [20]. This capability is particularly
important in high-stakes diagnostic applications
such as cancer screening. Figure 6 illustrates the
conceptual structure of the CNN-based model
architecture, depicting the flow of information
from ultrasound image input through feature
extraction, classification, and diagnostic output.
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Figure 6: Convolutional neural network-based architecture used for gallbladder ultrasound image

analysis.

The proposed deep learning model architecture
provides a robust, scalable, and clinically aligned
framework for automated gallbladder ultrasound
analysis. By combining hierarchical feature
learning, strategies, and
compatibility with explainable Al tools, the
architecture establishes a strong technical
foundation for accurate and reliable gallbladder

regularization

cancer screening in  realworld  clinical

environments.

4.5- Model Training and Optimization:

Model training was conducted within a supervised
deep learning framework, in which gallbladder
ultrasound images were paired with ground-truth
labels derived from expert radiological annotation
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and validated reference standards. The overall
training strategy was designed to ensure stable
convergence, robust  generalization, and
reproducible performance under realworld
clinical imaging conditions. To achieve this, the
available dataset was partitioned into training and
validation  subsets, with strict separation
maintained to avoid information leakage and to
enable unbiased optimization. Prior to training, all
ultrasound images underwent standardized
preprocessing, including intensity normalization
and resizing to a fixed spatial resolution
compatible with the network input layer. These
steps reduced inter-scan variability and facilitated
efficient gradient propagation during
optimization. The classification objective was
formulated using cross-entropy loss, a probabilistic
loss function well suited for binary diagnostic
tasks, as it penalizes incorrect predictions in
proportion to the confidence of the model [21].
This formulation is particularly effective for
medical screening applications where balanced
sensitivity and specificity are critical. Optimization
of network parameters was performed using
gradientbased  optimization methods with
adaptive learning rates, allowing the model to
dynamically adjust update magnitudes during
training. Adaptive optimization strategies improve
convergence speed and stability, especially when
dealing with heterogeneous ultrasound data
characterized by variable contrast, noise, and
lesion appearance. Key hyperparameters including
learning rate, batch size, number of epochs, and
regularization strength were iteratively tuned

based on validation set performance rather than
training accuracy alone. This validation-driven
tuning strategy ensured that model optimization
prioritized generalization rather than
memorization of training samples. To further
reduce the risk of overfitting, early stopping
mechanisms were incorporated into the training
pipeline. Training was automatically terminated
when validation loss failed to improve over a
predefined number of epochs, preventing
degradation of generalization performance due to
excessive parameter updates [22]. In parallel,
architectural regularization techniques such as
dropout layers and feature normalization were
employed to stabilize learning, reduce sensitivity to
noise, and improve robustness across varying
ultrasound image qualities. Throughout the
training process, performance metrics including
loss, accuracy, sensitivity, and specificity were
continuously monitored on both the training and
validation datasets. Monitoring these metrics
enabled early detection of  divergence,
underfitting, or overfitting and ensured that the
learning  process  remained  stable and
interpretable. Final model parameters were
selected based on optimal validation accuracy
combined with consistent loss convergence, rather
than peak performance at a single epoch, ensuring
reliability under clinical deployment conditions.
Table 6 presents a comprehensive summary of the
training and optimization strategy adopted in this
study, highlighting the key methodological choices
and their intended roles.

Table 6: Detailed Summary of Model Training and Optimization Strategy

Component

Description

Purpose

Learning paradigm

Supervised deep learning

Label-guided feature learning

Dataset split

Training and validation sets

Unbiased optimization

Loss function Cross-entropy loss

Probabilistic classification

Optimization method
learning rate

Gradient-based optimizer with adaptive

Stable and efficient
convergence

Hyperparameter tuning | Validation-driven iterative tuning

Improved generalization

Regularization Dropout and normalization Overfitting prevention
techniques
Early stopping Enabled based on validation loss Training stability

Model selection

Best validation accuracy and loss stability

Robust final model
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This comprehensive training and optimization
strategy ensured the development of a robust,
stable, and clinically reliable deep learning model
for gallbladder ultrasound image analysis. By
integrating  supervised  learning,  adaptive
optimization, validation-guided hyperparameter
tuning, and early stopping, the model achieved
strong  generalization  performance  while
remaining resilient to imaging variability. These
methodological choices provide a solid foundation
for accurate diagnostic evaluation and support the
safe translation of deep learning-enabled
ultrasound screening into realworld clinical
workflows.

5- Results and Discussion:

This prospective diagnostic study evaluated the
performance and clinical relevance of a deep
learning-enabled ultrasound framework for
gallbladder cancer screening in a real-world tertiary

care setting. After applying predefined eligibility
criteria and image quality control procedures, the
final study cohort comprised adult patients
presenting with suspected gallbladder pathology.
The cohort reflected the heterogeneous clinical
spectrum encountered in routine practice,
including benign gallbladder conditions such as
cholelithiasis,  chronic  cholecystitis,  and
gallbladder polyps, as well as cases with confirmed
or highly suspected gallbladder malignancy. The
demographic  distribution and  presenting
symptoms were consistent with regional
epidemiological patterns, supporting the external
validity of the findings. An overview of baseline
demographic and clinical characteristics of the
study population is provided in Table 7, which
summarizes patient age distribution, sex, common
presenting symptoms, and final diagnostic
categorization.

Table 7: Baseline demographic and clinical characteristics of the study population

Characteristic

Description

Age group

Adult patients (>18 years)

Sex distribution

Male and female

Common presenting symptoms

Right upper quadrant pain, dyspepsia, nausea, jaundice

Benign diagnoses

Cholelithiasis, chronic cholecystitis, gallbladder polyps

Malignant cases

Histopathologically or clinically confirmed gallbladder cancer

The proposed convolutional neural network
demonstrated strong diagnostic capability in
distinguishing malignant from non-malignant
gallbladder conditions on the independent test
dataset. The model achieved high diagnostic
accuracy with favorable sensitivity and specificity,
indicating reliable identification of malignant
lesions while maintaining robust discrimination
against benign inflammatory changes. Precision
and Fl-score values further confirmed balanced
performance across classes, while receiver

operating characteristic analysis showed a high
area under the curve, reflecting stable separability
across a wide range of decision thresholds. These
findings suggest that the model learned clinically
meaningful morphological and textural features
rather than relying on spurious correlations.
Quantitative diagnostic performance metrics of
the deep learning model are summarized in Table

8.

Table 8: Diagnostic performance of the deep learning-enabled ultrasound model

Performance metric Result
Accuracy 91.6%
Sensitivity 93.2%
Specificity 89.4%
Precision 90.8%

https://thesesjournal.com

| Shahzad et al., 2026 |

Page 339



https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

Volume 4, Issue 2, 2026

Fl-score

92.0%

Area under ROC curve (AUQC)

0.94

Receiver operating characteristic analysis further
illustrated the robustness of the classification
framework. As shown in Figure 7, the ROC curve
demonstrates strong discrimination between
malignant and non-malignant cases across varying
threshold values, supporting the suitability of the

model for both screening-oriented high-sensitivity
use cases and more conservative diagnostic
scenarios. The high AUC indicates consistent
performance and effective generalization to
unseen patient data.
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Figure 7: Receiver operating characteristic curve.

When compared with routine ultrasound
interpretation performed by radiologists, the Al-
assisted  approach  demonstrated  superior
diagnostic performance, particularly in cases
characterized by subtle or early-stage malignant
features. Several cases initially interpreted as
benign inflammatory changes on conventional
ultrasound were flagged as suspicious by the deep
learning model and were subsequently confirmed
as malignant through histopathology or
longitudinal clinical follow-up. This improvement
is clinically significant, as early gallbladder cancer
often presents with minimal morphological
disruption and substantial overlap with benign
conditions on ultrasound imaging. The enhanced
sensitivity of the Al model suggests that deep
learning-based feature extraction can capture
nuanced spatial and textural patterns—such as
focal wall irregularity and early infiltrative growth

that may be overlooked during routine visual
assessment. In addition to improved accuracy, the
deep learning framework demonstrated greater
consistency across cases, indicating a potential
reduction in inter-observer  variability.
Conventional ultrasound interpretation is
inherently subjective and influenced by operator
experience, workload, and image quality. By
providing standardized, objective analysis, the Al-
assisted system offers reproducible decision
support that can complement radiologist expertise
and harmonize diagnostic outcomes across
clinicians and clinical settings. This attribute is
particularly valuable in resource-constrained
healthcare environments, where access to
subspecialty expertise may be limited. Further
insight was gained through qualitative error
analysis. False-positive predictions were most
frequently associated with severe inflammatory
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wall  thickening and advanced chronic
cholecystitis, conditions known to closely mimic
malignant  changes on  ultrasound  [23].
Conversely, falsenegative cases were primarily
related to very earlystage lesions with minimal
structural alteration, underscoring the intrinsic
difficulty of detecting incipient gallbladder cancer
using ultrasound alone. These findings highlight
both the promise and the current limitations of
Al-assisted  ultrasound and point toward
opportunities for further refinement through

larger datasets, multi-center validation, and

RPN Classifier - Tralning vs. Validaton Loss

RPN Bounding Box Loss

incorporation of temporal information from cine
ultrasound sequences. The clinical workflow and
interpretability of the proposed system are
illustrated in Figure 8, which demonstrates how
deep learning-based analysis integrates with
conventional ultrasound interpretation to support
clinical decision-making. Rather than replacing
the radiologist, the Al system functions as an
assistive tool that highlights suspicious regions and
provides probabilistic risk assessment, thereby
enhancing diagnostic confidence and supporting
timely referral for further evaluation.
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Figure 8: Representative learning curves depicting training and validation loss and accuracy across
epochs, highlighting stable convergence and early stopping during model optimization.

The findings of this study are consistent with
emerging evidence supporting the role of artificial
intelligence in ultrasound-based diagnosis across
hepatobiliary and oncologic imaging domains.
However, a key distinction of the present work lies
in its prospective design and real-world clinical
evaluation. Many prior studies have relied on
retrospective  datasets or  highly curated
experimental  conditions,  limiting  their
translational relevance. By contrast, this study

provides prospective clinical evidence derived
from routine practice, thereby addressing a critical
gap in the literature on Al-assisted gallbladder
cancer screening. Despite its strengths, certain
limitations should be acknowledged. The single-
center design may limit generalizability to other
populations and imaging environments, and the
binary classification framework does not capture
finer pathological subtypes or risk stratification.
Future work should focus on multi-center
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validation, incorporation of explainable Al
techniques to enhance clinician trust, and real-
time deployment within ultrasound systems to
further improve clinical impact [24]. This
combined results and discussion demonstrate that
deep learning-enabled ultrasound imaging can
significantly enhance the screening and early
diagnosis of gallbladder cancer. By improving
diagnostic accuracy, reducing subjectivity, and
supporting clinical decision-making, the proposed
Al-assisted framework offers a promising and
scalable solution for addressing the substantial
burden of gallbladder cancer, particularly in
resource-limited healthcare settings where early
detection is most urgently needed.

6 Future Work:

While the findings of this prospective study
demonstrate the promising clinical utility of deep
learning-enabled  ultrasound  imaging  for
gallbladder cancer screening, several avenues for
future research remain to further enhance
robustness, generalizability, and clinical impact.
One important direction involves multi-center
and multi-population validation of the proposed
framework. Expanding the study across different
hospitals, geographic regions, and ultrasound
systems would allow assessment of model
performance under diverse imaging conditions
and patient demographics, thereby strengthening
external validity and facilitating broader clinical
adoption. Future work should also focus on the
integration of explainable artificial intelligence
(XAI) techniques into the diagnostic framework
[25]. Although the current model demonstrates
strong classification performance, incorporating
visualization methods such as attention maps or
class activation mapping would enable clinicians
to better understand which image regions drive
model predictions. Improved interpretability is
essential for building clinician trust, supporting
regulatory approval, and ensuring safe deployment
in high-stakes diagnostic environments such as
cancer screening. Another promising extension is
the transition from binary classification to multi-
class  disease  characterization and  risk
stratification. Differentiating between specific
benign conditions, premalignant lesions, and

varying stages of gallbladder cancer could provide
more granular diagnostic insights and support
personalized  clinical ~ decision-making  [26].
Additionally, integrating temporal information
from ultrasound cine sequences rather than
relying solely on static images may further improve
detection of subtle morphological changes
associated with early malignancy. From a clinical
workflow perspective, future studies should
explore realtime implementation of Al-assisted
analysis within ultrasound systems. Embedding
the model directly into scanning workflows could
enable on-thefly decision support, assist less-
experienced operators, and streamline referral
pathways for high-risk patients. Prospective studies
evaluating the impact of real-time Al assistance on
diagnostic confidence, reporting time, and patient
outcomes would provide valuable evidence for
routine clinical deployment [27].  Finally,
combining ultrasound-based deep learning models
with clinical, laboratory, and demographic data
represents an important direction for holistic risk
assessment. Multimodal models that incorporate
imaging features alongside patient history and
biochemical markers may further enhance
diagnostic accuracy and predictive performance.
Such integrated approaches could ultimately
support comprehensive, low-cost screening
strategies for gallbladder cancer, particularly in
resource-limited healthcare settings [28]. Future
research focused on multi-center validation,
explainability, ~ workflow  integration, and
multimodal learning has the potential to further
advance Al-driven gallbladder cancer screening
and accelerate its translation from research to
routine clinical practice.

Conclusion:
This study presents a prospective clinical
evaluation of a deep learning-enabled ultrasound
framework for the screening and diagnosis of
gallbladder cancer in a realworld tertiary care
setting. By integrating standardized ultrasound
acquisition, expert radiological annotation, and a
convolutional neural network-based analysis
pipeline, the proposed approach addresses key
limitations  of  conventional  ultrasound

interpretation, particularly operator dependence
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and reduced sensitivity for early-stage disease. The
findings demonstrate that Al-assisted ultrasound
imaging can significantly enhance diagnostic
accuracy and consistency in distinguishing
malignant from non-malignant gallbladder
conditions. The deep learning model achieved
strong performance across multiple evaluation
metrics and consistently outperformed routine
ultrasound assessment, especially in cases with
subtle or early malignant features that are
frequently overlooked in conventional practice.
These results highlight the ability of data-driven
feature  learning to  capture  nuanced
morphological and textural patterns beyond
human visual perception. Importantly, this work
provides prospective clinical evidence supporting
the feasibility and clinical value of integrating
artificial  intelligence into  ultrasound-based
gallbladder cancer screening workflows. The use of
institution-specific ~ data, robust  reference
standards, and patient-level evaluation strengthens
the translational relevance of the study and
supports potential adoption in routine practice. In
resource-constrained healthcare environments,
where access to advanced imaging modalities is
limited, Al-assisted ultrasound offers a scalable
and costeffective strategy to improve early
detection and diagnostic equity. While further
multi-center validation and real-time
implementation are warranted, the results of this
study underscore the transformative potential of
deep learning in hepatobiliary imaging. By
enhancing early diagnosis, reducing diagnostic
subjectivity, and supporting clinical decision-
making, deep learning-enabled ultrasound
imaging represents a promising tool for improving
patient outcomes and addressing the substantial
burden of gallbladder cancer.
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