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Abstract 
Recent digitalization has included increasing elements of artificial intelligence 
and Machine Learning into agriculture and Deep Learning to address the 
challenges brought about by population growth, Cli- mate change (CC) and 
Resource Limitation (RL). The present study comprehensively deals with the areas 
of potential applications of AI techniques. The innovations range from upstream 
to downstream in agricultural production, with an emphasis on those that 
conform to Climate-smart (CS) agricultural practices. A review of research 
articles was carried out, with the Application of Machine Learning and Deep 
Learning in crop selection, monitoring and land management, water, soil and 
nutrient malabsorp- tion, management, weed control, harvest and post-harvest 
practices, managing pests and insects, and soil management. The results highlight 
that ML and DL enable the analysis of complicated datasets, thereby informing 
data-driven decision-making, reducing dependence on subjective expertise, and enhanc- 
ing farm management strategies. Machine Learning and Deep Learning also offer 
immense opportunities in increasing agriculture productivity, sustainability, and 
resilience. By highlighting data-driven insights and embracing innovative 
technologies, the agricultural sector can transition toward more efficient, en- 
vironmentally sustainable, and economically feasible approaches to farming to 
contribute towards food globally. 
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1 Introduction 
Sustainable agriculture is vital for a variety of 
reasons such as increased food and energy prices, 
climate change, continuing exhaustion and 
depletion of natural resources, an unprecedented 
reduction in freshwa- ter availability, and the 
projected increase in population [1–5]. 
Agriculture is vital for food security and economic 
prosperity globally, constituting 6.4% of the total 
GDP and serving as a significant livelihood source 
for millions globally [6]. The United Nations’ 
Food and Agriculture Organization (FAO) 
projects a 70% surge in worldwide food demand by 
2050, because of population growth and changing 
consumption patterns related to increased incomes 
in many nations [7,8]. These changes in demand 

exert enormous pressure on the food systems. 
Despite surpluses in global food production, 
widespread malnutrition is thought to affect 500 
million people, while over 821 million people 
suffer from hunger. Urbanization trends show 
that two-thirds of the population will live in urban 
areas, with a large increase projected in several 
regions [9,11]. This shift in demographics, along 
with an approximate 473 million people who are 
expected to enter the middle class in India and 
Nigeria, is a challenge to the fulfillment of 
Sustainable Development Goals (SDGs), 
specifically the elimination of hunger, by 2030. 
Meeting 40% of the water demand may be a 
challenge, with a further 20% of agricultural land 
that may be degraded [12].Taking into 
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consideration the impending resource constraints, 
farmers are encouraged to practice sustainability to 
increase productivity [13]. Mainly because of 
increased yields, advanced technologies are 
required to satisfy the worldwide population’s 

expected demands by 2050 [14,15]. However, the 
feasibility of achiev- ing these objectives in an 
environmentally sustainable and socially equitable 
approach remains uncertain [10,12]. 

 
Table 1: Abbreviations and their full forms. 

 
Abbreviation full forms 
 
AI Artificial Intelligence 
ML Machine Learning 
DL Deep Learning 
CC Climate Change 
FAO Food and Agriculture Organization 
SDGs Sustainable Development Goals ANN / 
ANNs Artificial Neural Network(s) RF
 Random Forest 
DTs Decision Trees 
SVM Support Vector Machine 
KNN k-Nearest Neighbors 
GAN Generative Adversarial Networks 
CNN Convolutional Neural Networks 
RNN Recurrent Neural Networks 
DNN Deep Neural Network 
LSTM Long- Short Term Memory 
IoT Internet of Things 

 
Agri-technology and precision farming, now 
encompassed under digital agriculture, have 
emerged as innovative scientific disciplines 
leveraging data-concentrated methodologies to 
enhance agricultural effi- ciency while mitigating 
environmental influence [17,18]. The modern 
agriculture landscape uses many sensors to 
generate data, offering insights into dynamic 
interactions between crops, soil, weather condi- 
tions, and machinery performance. This Big Data 
enables more informed and expedited decision-
making processes [19]. The integration of 
computers into agriculture was documented in 
1983 [20]. Since then, a number of approaches, 
from Decision Support Systems and databases, 
have been used to cope with agri- cultural 
problems. Over the past decade, Artificial 
Intelligence (AI), Deep Learning (DL), 
encompassing Machine Learning (ML) have been 
developed [21]. Using High Performance 
Computing and Big Data technologies, ML and 
DL have led to a revolution in the analysis of 

agricultural environments. ML is described as the 
scientific discipline that makes it possible for 
machines to learn without explicit program- ming 
[22].In agriculture, ML and DL have a lot of 
promise for solving complicated processes, 
measuring tendencies, and recognizing 
complicated relationships within an operating 
environment [19]. ML models are divided into 
four categories: supervised learning [23], 
Unsupervised learning [24], Semi-supervised 
learning [25], and Reinforcement learning [26]. 
 
2 Materials and Methods 
The structure consists of four basic phases, which 
are identification, where the studies are carried 
out; screening, used to eliminate irrelevant 
literature; eligibility, which includes assessment; 
and inclusion, which is used to complete the 
choice of studies to analyze as given in Figure 1 . 
This structured process promotes the credibility 
levels of the review, ensuring full coverage within 
the research domain. 
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Figure 1: PRISMA Flow Diagram Methodology 
 

Agriculture Land is a critical resource for food 
production, environment, andregulation . The 
assess- ment includes evaluation of soil, 
topography,climate, and other factors to match 
land properties with crop needs This models are 
capable of handling a vast amount of data, result in 
a remarkably high degree ofvul- nerabilities [14].. 
ML is used to tackle nonlinear problemswith 
varied data sets, making decisions better and 
minimizing dependence on user knowledge. DL 
takes these applications further by"transforming 
data sets with hierarchical data modeling, 
automating feature description, ensuring 
increased accuracy with classificationanalysis.The 
sustainability and resilience of modern agriculture 
are fundamentally dependent upon ML and DL 
models, serving as a predictive control system for 
crop selection that is informed not by generalized 
data but rather by vast, heterogeneous datasets 
ranging from site-specific soil characteristics and 
hyperlocal climate forecasts to historical yield data 
and even global market prices. Deep Learning 
architectures, including RNNs and CNNs, have 
been invaluable in processing complex inputs such 
as time- series climate predictions and geospatial 
imagery in the form of NDVI maps, which 
identify nonlinear patterns indicative of risk and 
opportunity. This level of precision control lowers 
risk by recommending the most resilient crop 
variety types appropriate to the particular farm 
environment, directly influencing resource use 
efficiency, such as irrigation and fertilizer 
application. The ML/DL pairing serves to ensure 
ahead of planting that the crop selection decision 
is optimized for yield, farmer income stabilization, 
and a drastic reduction of the operational 
footprint, thus driving genuine green technology 

adoption in farm- ing.Machine Learning 
(ML)/Deep Learning (DL) segues as the necessary 
control system for optimizing soil management, 
thereby transforming agricultural practices from 
generalized resource inputs to hyper- localized 
precision farming. This control is enabled via the 
merging of massive, disparate data inputs such as 
IoT soil sensors (for moisture, pH, nutrients), 
topographic maps, and high-resolution satellite 
imagery, which is modeled via Random Forest 
Regressors and Artificial Neural Networks 
(ANNs). The result is the highly precise 
prediction of exact nutrient and water 
requirements for each small area of farmland, 
thereby allowing control for fertilizer application 
only when necessary, thus significantly minimizing 
fer- tilizer runoff, precluding the pollution of 
waterways (eutrophication), and minimizing the 
energy profile of agriculture. Machine learning 
and deep learning are part of the critical control 
system in modern crop nutrient management, 
enabling the shift from expensive, uniform 
application to highly sustainable variable rate 
technology. This intelligence enables the fusing of 
large, complex datasets comprising real- time soil 
nutrient readings, such as from IoT sensors, 
multispectral satellite and drone imagery on plant 
health and hyperlocal weather forecasts, which are 
analyzed by algorithms such as Random Forest Re- 
gressors and ANNs. Models can thus predict site-
specific nutrient demand at every point in the field 
and at different growth stages, serving as 
prescription maps for automated machinery. 
Precise and efficient control mechanisms are 
central to sustainability. It achieves up to savings 
in fertilizer and drastically cuts environmentally 
destructive nitrogen runoff into waterways 
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reduces input costs, boosts and mini- mizes the 
environmental footprint of global food 
production Additionally, the strength of the 
predictive control system of ML/DL is used 
within crop yield prediction, which is 
fundamental for economic sus- tainability and 
worldwide food safety. The ML/DL predictive 
model is extremely useful for studying 
complicated temporal (time-series) data sets such 
as past crop yields, weather changes, soil 
conditions, even the genetic makeup of the crop 
used, with RNNs/LSTM models proving 
particularly adept at such tasks. Through the 
continuous learning of the complicated, non-
linear relationship existing within a set of diverse 
inputs used to produce a certain desired result, the 
control system is capable of making highly 
accurate, real-time crop yield predictions. This 
predictive advantage gives the farming community 
highly valuable, real-time control inputs, such as 
irrigation, critical mid-season nutrient spurts, even 
optimized harvest delivery systems, which 
significantly reduces crop waste while ensuring 
maximization of resource utilization, thus ensuring 
agricultural profitability as well as commodity 
chain efficiencies.ML and DL are increasingly 
making Pest and Disease Management a highly 

effective and sustainable control system, which 
replaces broad-spectrum, scheduled chemical 
treatments with targeted, early intervention. This 
is primarily driven by models of Deep Learning, 
particularly Convolutional Neural Networks, 
analyzing huge amounts of visual data in the forms 
of high-resolution images from drones, fixed field 
cameras, and smartphone applications to make 
real-time image classification and object detection 
of pathogens, pests, and the subtle visual 
symptoms they cause on foliage. This advanced 
control capability lets the system identify not only 
what the threat is, but precisely where it is, very 
often detecting outbreaks in their nascent stages 
days or weeks before a human scout could. The 
resultant output is a prescription map, feeding 
autonomous robotic sprayers or targeted 
applications, reducing pesticide and fungicide use, 
in some cases up to 90. Such a huge reduction 
minimizes the development of chemical resistance 
and pro- tects useful insects, like pollinators, and 
ecosystem health while considerably lowering the 
environmental footprint of crop protection. 
 
3 Literature Review 
The following table summarizes the key research 
findings from the reviewed studies (2023–2025). 

 
Table 2: Summary of literature review on ML and DL applications in agriculture. 

No. Reference Study Domain Model Key Findings 

1 Li et al. (2023) [31] Land Quality RF & DNN RF outperformed DNN for land 
    quality assessment. 
2 Azadnia (2022) [32] Soil Mgmt CNN High accuracy soil texture classi- 
    fication via mobile. 
3 Singh et al. (2022) [33] Land Monitoring U-Net & RF Superior performance in map- 
    ping land usage types. 
4 Sarma et al. (2022) Disease Mgmt VGG16 (CNN) Effective disease detection inte- 
 [34]   grated with IoT. 
5 El Hoummaidi (2021) Land Mapping UAV + DL Precise vegetation mapping in 
    arid environments. 
6 Ma et al. (2021) [35] Yield Prediction LSTM 93.77% accuracy in early-season 
    crop mapping. 
7 Koul (2021) Crop Selection ML/DL Optimized  crop  recommenda- 
    tions based on soil health. 
8 Hüppi et al. (2020) Yield Prediction RF Successful regional yield fore- 
 [36]   casting across Europe. 
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Table 2 – Continued from previous page  
 

No. Reference Study Domain Model Key Findings 
9 Vogel et al. (2019) [37] Soil Health RF & SVM Predicted tillage status using mi- 
    crobiome data. 
10 Osorio et al. (2020) Weed Control YOLOv3 Targeted weed spraying through 
 [38]   visual identification. 
11 Yu et al. (2019) [39] Weed Detection Deep CNN Effectively identified specific 
    weeds in turfgrass. 
12 Hussain et al. (2020) Weed Detection SVM, KNN Proved the efficacy of ML for 
    precision weeding. 
13 Wu et al. (2019) [40] Weed Coverage Mask R-CNN Precision estimation of lettuce 
    weed coverage. 
14 Zhu et al. (2018) [41] Smart Agriculture Deep Learning Evaluated real-time classification 
    for target detection. 
15 Arad et al. (2020) [42] Pest Mgmt ANN, SVM Detected insect pests in corn and 
    wheat crops. 
16 Li et al. (2021) [43] Pest Mgmt CNN Improved results using data aug- 
    mentation techniques. 
17 Zhu et al. (2021) [44] Disease Mgmt VGG-19 98.7% accuracy for potato/sugar 
    beet diseases. 
18 Abbas et al. (2021) Disease Mgmt DenseNet 99.75% accuracy in multi-crop 
 [45]   disease detection. 

19 Melesse (2022) [46] Post-Harvest Digital Twin Monitored fruit quality evolution 
and shelf-life. 
20 Ashtiani (2021) [47] Post-Harvest DL Models Detected mulberry ripeness 

stages for harvesting. 
 
4 Problem Statement 
This study is designed to answer the following 
Research Questions (RQs): 
• RQ-1: What ML and DL methodologies 
have been applied to various stages of agricultural 
pro- duction? 
• RQ-2: In what ways have ML and DL 
approaches impacted agricultural research and 
practices? 
• RQ-3: How effective are ML and DL 
techniques in addressing agricultural challenges? 
 
5 Data extraction and synthesis 
Hematic domains effectively organize the findings 
as given Figure 2. Thesedomains include crop 
selection, land monitoring and management,water 
and nutrient management, soil management, 
weed, insect and- Pest Management, Disease 
Detection and Management, Harvest andpost-
harvest practices, and crop yield prediction. While 

the domain ofEven though climate impact 
assessment was found to be significant, it was 
excludedfrom this review due to its broad scope, 
which deserves a separate focused 
analysis.Confusion matrix of the proposed deep 
learning model showing True Positives, False 
Positives, True Negatives, and False Negatives as 
given Figure.3 . True Positive (TP): 85,True 
Negative (TN): 90,False Positive (FP): 15,False 
Negative (FN): 10 The current state of the field is 
plagued by challenges of data unavailability (multi-
modal datasets), interpret-ability, scalability, and 
applicability in real-time .Build resilient datasets by 
integrating satellite images, IoT sensors, and 
climate models .Apply Transfer Learning to address 
data unavailability in particular geographic 
locations .Implement ML/DL models as a direct 
component of IoT platforms for real-time analysis 
[44-48]. 
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Figure 2: Thematic domains of Machine Learning and Deep Learning applications 

 

 
 

Figure 3: Confusion matrix of the proposed deep learning model showing True Positives, False Positives, 
True Negatives, and False Negatives. 

 
6 Mathematical Modeling of ROC 
Curve 
1. The Probability Function (The "Brain") 
All the models discussed in your paper (CNN, 

LSTM, Random Forest) act as a mathematical 
function, let’s call it f (x). 
• Input (x): Data like leaf color, soil 
moisture, or plant height. 
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• Output (yˆ): A probability score between 0 
and 1. 
 
yˆ = f (x) = P (Class = 1 | x) 
If yˆ = 0.95, the model is 95% sure the plant is 
Diseased. If yˆ = 0.10, the model is only 10% sure 
(likely Healthy). 
 
2. The Decision Threshold (θ) 
To make a final decision (Yes or No), we need a 
cut-off point, called the threshold (θ). 
Prediction = { 1 (Diseased)if yˆ ≥ θ0(Healthy)if yˆ 
< θ 
The ROC curve is created by testing every 
possible threshold from 0.0 to 1.0 and plotting 
the result. 
 
3. The ROC Coordinates (The Axes) 
For every threshold θ, we calculate two 
coordinates (x, y) for the graph: 
Y-Axis: True Positive Rate (Sensitivity) 
Measures how many actual positive cases were 
found. 
 
TP TP + FN 
(Where TP = Correctly predicted sick, FN = 
Mistakenly predicted healthy) 
X-Axis: False Positive Rate (False Alarm) 
Measures how many healthy cases were wrongly 

flagged. 

FP 
FP + TN 

(Where FP = Healthy labeled as sick, TN = 
Healthy correctly labeled as healthy) 
 
4. Area Under the Curve (AUC) 
The single number summary (e.g., 0.99 for Soil) is 
calculated using an Integral. It represents the 
prob- ability that the model will rank a randomly 
The graph visualizes the trade-off between the 
equation for Sensitivity (TPR) and the equation 
for False Alarms as we slide the threshold across 
all probabilities. Its aim is to evaluate the 
potential accuracy of five models that can be 
useful for identifying diseases, soil quality, or the 
appearance of weeds. Identify success on the 
vertical axis means identifying success consists of 
selecting the right problem. Errors on the 
horizontal axis means errors consist of false alarm. 
Models closest to the top left should be chosen. All 
of those models are superior, much above the 
diagonal ’guessing’ line. The winner again is Soil 
Quality, modeled by Brown, which not only scales 
up at high precision at but is also followed very 
closely by the two Health and Diseases models. 
With its AUC being above 0.90 for all, it proves 
the reliability of the AI tools when they are 
applied for the purpose of automation of farm 
management as given Figure.4. 

 
Figure 4: Statistics machine learning and medical testing 

 
7 Result 
Most Popular Technology CNNs (Deep Learning) 
– currently the most preferred model, utilized in 
the greatest number of papers (8).They are used 
twice as often as the next method in the list of 

preferred approaches, namely Random Forest (4 
studies). Top Application Fields Land and Soil 
Management is the most investigated domain 
within agriculture (27.8).Disease Management and 
Weed Control come right after, contributing 22.2 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://thesesjournal.com                      | Tayyab et al., 2026 | Page 274 
 

each in research. It is clear that the use of Deep 
Learning (CNNs) by researchers is focused 

specifically in the areas of soil, crop diseases, and 
weed-related problems as given Figure 5. 

 

Figure 5: Machine Learning and Deep Learning in Sustainable Agriculture 
 
8 Discussion 
As has been showcased in the analysis, the 
dominant model is Deep Learning, or CNNs; 
primarily, the drivers are visual tasks Disease and 
Weed Management have combined coverage of of 

research. On the other hand, Land Soil 
Management remains the leading individual 
domain, at 27.8 leveraging these technologies in 
its quest for optimized sustainable resource usage 
as given Figure 6. 

 

Figure 6: Machine Learning and Deep Learning models for agricultural 
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9 Conclusion 
The convergence of ML and DL technologies in 
agriculture marks a criticalprogress in meeting the 
chal- lenges that are faced globally, for instance, 
food insecurity,climate variability, and resource 
constraints. This comprehensive review assesses the 
use of these technologies on differentagricultural 
processes, such as crop choice, land 
observation,management, water, soil, nutrient 
management, pest, diseasecontrol, and post-harvest 
management. The results highlight therole of ML 
and DL in making data-driven decisions, 
whichincreases the accuracy of agricultural 
practices, as well as enhances 
resourceefficiency.Despite this progress, there are 
still a number of challenges, including a lack of 
multimodal data sets, problems with the modeling 
process,scalability, interpretability, and real-time 
applicability. To address theselimitations, the 
development of robust datasets that fuse 
satelliteimagery, IoT sensors, and climate forecasts 
is vital. Additionally, transferlearning methods 
might assist with alleviating problems resulting 
from a lack of available data, especially inregions 
with limited agricultural data. Future research 
should prioritize the integration of ML/DL 
models with IoT systems to facilitate real-
timeanalytics, which helps in making improved 
decisions.The synergistic potential of ML, and DL 
specifically, has been largely unexploited within 
the agricultural sector. There are certain 
application areas, such as yield prediction,besides 
pest management, research has yielded 
contradictory findings. 
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