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1 Introduction

Abstract

Recent digitalization has included increasing elements of artificial intelligence
and Machine Learning into agriculture and Deep Learning to address the
challenges brought about by population growth, Cli- mate change (CC) and
Resource Limitation (RL). The present study comprehensively deals with the areas
of potential applications of Al techniques. The innovations range from upstream
to downstream in agricultural production, with an emphasis on those that
conform to Climate-smart (CS) agricultural practices. A review of research
articles was carried out, with the Application of Machine Learning and Deep
Learning in crop selection, monitoring and land management, water, soil and
nutrient malabsorp- tion, management, weed control, harvest and post-harvest
practices, managing pests and insects, and soil management. The results highlight
that ML and DL enable the analysis of complicated datasets, thereby informing
data-driven decision-making, reducing dependence on subjective expertise, and enhanc-
ing farm management strategies. Machine Learning and Deep Learning also offer
immense opportunities in increasing agriculture productivity, sustainability, and
resilience. By highlighting data-driven insights and embracing innovative
technologies, the agricultural sector can transition toward more efficient, en-
vironmentally sustainable, and economically feasible approaches to farming to
contribute towards food globally.

exert enormous pressure on the food systems.

Sustainable agriculture is vital for a variety of
reasons such as increased food and energy prices,
change, continuing exhaustion and
depletion of natural resources, an unprecedented
reduction in freshwa- ter availability, and the
projected population  [1-5].
Agriculture is vital for food security and economic
prosperity globally, constituting 6.4% of the total
GDP and serving as a significant livelihood source
for millions globally [6]. The United Nations’
Food and Agriculture Organization (FAQO)
projects a 70% surge in worldwide food demand by
2050, because of population growth and changing
consumption patterns related to increased incomes
in many nations [7,8]. These changes in demand

climate

increase  in

Despite surpluses in global food production,
widespread malnutrition is thought to affect 500
million people, while over 821 million people
suffer from hunger. Urbanization trends show
that two-thirds of the population will live in urban
areas, with a large increase projected in several
regions [9,11]. This shift in demographics, along
with an approximate 473 million people who are
expected to enter the middle class in India and
Nigeria, is a challenge to the fulfillment of
Sustainable  Development  Goals  (SDGs),
specifically the elimination of hunger, by 2030.
Meeting 40% of the water demand may be a
challenge, with a further 20% of agricultural land
that may be degraded [12].Taking into
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consideration the impending resource constraints,
farmers are encouraged to practice sustainability to
increase productivity [13]. Mainly because of
increased vyields, advanced technologies are
required to satisfy the worldwide population’s

Table 1: Abbreviations and their full forms.

expected demands by 2050 [14,15]. However, the
feasibility of achiev- ing these objectives in an
environmentally sustainable and socially equitable

approach remains uncertain [10,12].

Abbreviation full forms

Al Artificial Intelligence

ML Machine Learning

DL Deep Learning

CC Climate Change

FAO Food and Agriculture Organization

SDGs Sustainable Development Goals ANN /

ANNs Artificial Neural Network(s) RF
Random Forest

DTs Decision Trees

SVM Support Vector Machine

KNN k-Nearest Neighbors

GAN Generative Adversarial Networks

CNN Convolutional Neural Networks

RNN Recurrent Neural Networks

DNN Deep Neural Network

LSTM Long- Short Term Memory

loT Internet of Things

Agri-technology and precision farming, now
encompassed under digital agriculture, have
emerged as innovative scientific disciplines
leveraging data-concentrated methodologies to
enhance agricultural effi- ciency while mitigating
environmental influence [17,18]. The modern
agriculture landscape uses many sensors to
generate data, offering insights into dynamic
interactions between crops, soil, weather condi-
tions, and machinery performance. This Big Data
enables more informed and expedited decision-
making processes [19]. The integration of
computers into agriculture was documented in
1983 [20]. Since then, a number of approaches,
from Decision Support Systems and databases,
have been used to cope with agri- cultural
problems. Over the past decade, Artificial
Intelligence  (AI), Deep Learning (DL),
encompassing Machine Learning (ML) have been
developed [21]. Using High Performance
Computing and Big Data technologies, ML and
DL have led to a revolution in the analysis of

agricultural environments. ML is described as the
scientific discipline that makes it possible for

machines to learn without explicit program- ming
[22].In agriculture, ML and DL have a lot of

promise for solving complicated processes,
measuring tendencies, and recognizing
complicated relationships within an operating
environment [19]. ML models are divided into
four categories: supervised learning [23],
Unsupervised learning [24], Semi-supervised
learning [25], and Reinforcement learning [26].

2 Materials and Methods

The structure consists of four basic phases, which
are identification, where the studies are carried
out; screening, used to eliminate irrelevant
literature; eligibility, which includes assessment;
and inclusion, which is used to complete the
choice of studies to analyze as given in Figure 1 .
This structured process promotes the credibility
levels of the review, ensuring full coverage within
the research domain.
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Figure 1: PRISMA Flow Diagram Methodology

Agriculture Land is a critical resource for food
production, environment, andregulation . The
assesss ment includes evaluation of soil,
topography,climate, and other factors to match
land properties with crop needs This models are
capable of handling a vast amount of data, result in
a remarkably high degree ofvul- nerabilities [14]..
ML is used to tackle nonlinear problemswith
varied data sets, making decisions better and
minimizing dependence on user knowledge. DL
takes these applications further by"transforming
data sets with hierarchical data modeling,
automating  feature  description,  ensuring
increased accuracy with classificationanalysis. The
sustainability and resilience of modern agriculture
are fundamentally dependent upon ML and DL
models, serving as a predictive control system for
crop selection that is informed not by generalized
data but rather by vast, heterogeneous datasets
ranging from site-specific soil characteristics and
hyperlocal climate forecasts to historical yield data
and even global market prices. Deep Learning
architectures, including RNNs and CNNs, have
been invaluable in processing complex inputs such
as time- series climate predictions and geospatial
imagery in the form of NDVI maps, which
identify nonlinear patterns indicative of risk and
opportunity. This level of precision control lowers
risk by recommending the most resilient crop
variety types appropriate to the particular farm
environment, directly influencing resource use
efficiency, such as irrigation and fertilizer
application. The ML/DL pairing serves to ensure
ahead of planting that the crop selection decision
is optimized for yield, farmer income stabilization,
and a drastic reduction of the operational
footprint, thus driving genuine green technology

adoption in farm- ing.Machine Learning
(ML)/Deep Learning (DL) segues as the necessary
control system for optimizing soil management,
thereby transforming agricultural practices from
generalized resource inputs to hyper- localized
precision farming. This control is enabled via the
merging of massive, disparate data inputs such as
IoT soil sensors (for moisture, pH, nutrients),
topographic maps, and high-resolution satellite
imagery, which is modeled via Random Forest
Regressors and Artificial Neural Networks
(ANNs). The result is the highly precise
prediction of exact nutrient and water
requirements for each small area of farmland,
thereby allowing control for fertilizer application
only when necessary, thus significantly minimizing
fer- tilizer runoff, precluding the pollution of
waterways (eutrophication), and minimizing the
energy profile of agriculture. Machine learning
and deep learning are part of the critical control
system in modern crop nutrient management,
enabling the shift from expensive, uniform
application to highly sustainable variable rate
technology. This intelligence enables the fusing of
large, complex datasets comprising real- time soil
nutrient readings, such as from IoT sensors,
multispectral satellite and drone imagery on plant
health and hyperlocal weather forecasts, which are
analyzed by algorithms such as Random Forest Re-
gressors and ANNs. Models can thus predict site-
specific nutrient demand at every point in the field
and at different growth stages, serving as
prescription maps for automated machinery.
Precise and efficient control mechanisms are
central to sustainability. It achieves up to savings
in fertilizer and drastically cuts environmentally
destructive nitrogen runoff into waterways
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reduces input costs, boosts and mini- mizes the
environmental  footprint of global food
production Additionally, the strength of the
predictive control system of ML/DL is used
within  crop vyield prediction, which s
fundamental for economic sus- tainability and
worldwide food safety. The ML/DL predictive
model is extremely useful for studying
complicated temporal (time-series) data sets such
as past crop yields, weather changes, soil
conditions, even the genetic makeup of the crop
used, with RNNs/LSTM models proving
particularly adept at such tasks. Through the
continuous learning of the complicated, non-
linear relationship existing within a set of diverse
inputs used to produce a certain desired result, the
control system is capable of making highly
accurate, real-time crop vyield predictions. This
predictive advantage gives the farming community
highly valuable, real-time control inputs, such as
irrigation, critical mid-season nutrient spurts, even
optimized  harvest delivery systems, which
significantly reduces crop waste while ensuring
maximization of resource utilization, thus ensuring
agricultural profitability as well as commodity
chain efficiencies. ML and DL are increasingly
making Pest and Disease Management a highly

effective and sustainable control system, which
replaces broad-spectrum, scheduled chemical
treatments with targeted, early intervention. This
is primarily driven by models of Deep Learning,
particularly Convolutional Neural Networks,
analyzing huge amounts of visual data in the forms
of high-resolution images from drones, fixed field
cameras, and smartphone applications to make
real-time image classification and object detection
of pathogens, pests, and the subtle visual
symptoms they cause on foliage. This advanced
control capability lets the system identify not only
what the threat is, but precisely where it is, very
often detecting outbreaks in their nascent stages
days or weeks before a human scout could. The
resultant output is a prescription map, feeding
autonomous  rtobotic  sprayers or targeted
applications, reducing pesticide and fungicide use,
in some cases up to 90. Such a huge reduction
minimizes the development of chemical resistance
and pro- tects useful insects, like pollinators, and
ecosystem health while considerably lowering the
environmental footprint of crop protection.

3 Literature Review

The following table summarizes the key research
findings from the reviewed studies (2023-2025).

Table 2: Summary of literature review on ML and DL applications in agriculture.

No. Reference Study Domain Model Key Findings

1 Li et al. (2023) [31] Land Quality RF & DNN RF outperformed DNN for land
quality assessment.

2 Azadnia (2022) [32] Soil Mgmt CNN High accuracy soil texture classi-
fication via mobile.

3 Singh et al. (2022) [33] Land Monitoring ~ U-Net & RF Superior performance in map-

4 Sarma et al. (2022) Disease Mgmt
(34]

5 El Hoummaidi (2021)  Land Mapping

6 Ma et al. (2021) [35] Yield Prediction

7 Koul (2021) Crop Selection

8 Hippi et al. (2020) Yield Prediction
(36]

ping land usage types.
VGG16 (CNN)  Effective disease detection inte-
grated with IoT.

UAV + DL Precise vegetation mapping in
arid environments.

LSTM 93.77% accuracy in early-season
crop mapping.

ML/DL Optimized crop recommenda-
tions based on soil health.

RF Successful regional yield fore-

casting across Europe.
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Table 2 - Continued from previous page

No. Reference Study Domain

Model Key Findings

9 Vogel et al. (2019) [37] Soil Health

10  Osorio et al.  (2020) Weed Control
(38]

11 Yuetal (2019) [39] Weed Detection
12 Hussain et al. (2020) Weed Detection
13 Wuetal (2019) [40]  Weed Coverage

14 Zhuetal. (2018) [41]

Smart Agriculture
15  Arad etal. (2020) [42] Pest Mgmt

16  Lietal (2021) [43] Pest Mgmt

17 Zhuetal (2021) [44] Disease Mgmt

18  Abbas et al (2021) Disease Mgmt

[45]
19 Melesse (2022) [46] Post-Harvest
and shelflife.
20 Ashtiani (2021) [47] Post-Harvest

RF & SVM

Deep Learning

Predicted tillage status using mi-
crobiome data.

YOLOvV3 Targeted weed spraying through
visual identification.

Deep CNN Effectively identified  specific
weeds in turfgrass.

SVM, KNN Proved the efficacy of ML for
precision weeding.

Mask R-CNN Precision estimation of lettuce

weed coverage.
Evaluated real-time classification
for target detection.

ANN, SVM Detected insect pests in corn and
wheat crops.
CNN Improved results using data aug-
mentation techniques.
VGG-19 98.7% accuracy for potato/sugar
beet diseases.
DenseNet 99.75% accuracy in multi-crop
disease detection.
Digital Twin Monitored fruit quality evolution
DL Models Detected  mulberry  ripeness

stages for harvesting.

4 Problem Statement

This study is designed to answer the following
Research Questions (RQs):

. RQ-1: What ML and DL methodologies
have been applied to various stages of agricultural
pro- duction?

. RQ-2: In what ways have ML and DL
approaches impacted agricultural research and
practices!

. RQ-3: How effective are ML and DL

techniques in addressing agricultural challenges?

5 Data extraction and synthesis

Hematic domains effectively organize the findings
as given Figure 2. Thesedomains include crop
selection, land monitoring and management,water
and nutrient management, soil management,
weed, insect and- Pest Management, Disease
Detection and Management, Harvest andpost-
harvest practices, and crop yield prediction. While

the domain ofEven though climate impact
assessment was found to be significant, it was
excludedfrom this review due to its broad scope,
which deserves a separate focused
analysis.Confusion matrix of the proposed deep
learning model showing True Positives, False
Positives, True Negatives, and False Negatives as
given Figure.3 . True Positive (TP): 85,True
Negative (TN): 90,False Positive (FP): 15,False
Negative (FN): 10 The current state of the field is
plagued by challenges of data unavailability (multi-
modal datasets), interpret-ability, scalability, and
applicability in real-time .Build resilient datasets by
integrating satellite images, IoT sensors, and
climate models .Apply Transfer Learning to address
data unavailability in particular geographic
locations .Implement ML/DL models as a direct
component of IoT platforms for real-time analysis

[44-48)].
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Records identified from
Databases & Registers
(n= INSERT NUMBER)

Records removed before screening:
- Duplicate records removed (n= _...)
- Records marked ineligible (n = ...)

Records screened
(n= INSERT NUMBER)

fxcluded \

Records excluded Reports sought for retrieval
(n = INSERT NUMBER) (n = INSERT NUMBER)

ﬁ ot retrieved\

Reports not retrieved
(n= INSERT NUMBER)

Reports assessed for eligibility
(n= INSERT NUMBER)

Reports excluded:
- Not focused on ML/DL (n=...) New studies included in review

- Not Sustainable Agriculture (n=_..) (n = INSERT NUMBER)
- Wrong Language (n=...)

/Ex e \

Total studies included in review
(n=20)

Figure 2: Thematic domains of Machine Learning and Deep Learning applications

Confusion Matrix

True Posit
(TP)
85

Positive

Actual Values

(FN)
10

Negative

ive False Positive
(FP)
15

False Negative True Negative

(TN)
90

Positive

Negative

Predicted Values

Figure 3: Confusion matrix of the proposed deep learning model showing True Positives, False Positives,
True Negatives, and False Negatives.

6 Mathematical Modeling of ROC
Curve

1. The Probability Function (The "Brain")
All the models discussed in your paper (CNN,

LSTM, Random Forest) act as a mathematical
function, let’s call it f (x).

. Input (x): Data like leaf color, soil
moisture, or plant height.
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. Output (y*): A probability score between O
and 1.

v =f(x)=P(Class=1 | x)

If y» = 0.95, the model is 95% sure the plant is
Diseased. If y~ = 0.10, the model is only 10% sure
(likely Healthy).

2. The Decision Threshold (6)

To make a final decision (Yes or No), we need a
cut-off point, called the threshold (6).

Prediction = { 1 (Diseased)ify~ > O0(Healthy)ify*
<6

The ROC curve is created by testing every
possible threshold from 0.0 to 1.0 and plotting
the result.

3. The ROC Coordinates (The Axes)
For every threshold 6O, we
coordinates (x, y) for the graph:
Y-Axis: True Positive Rate (Sensitivity)

Measures how many actual positive cases were
found.

calculate two

TP TP +FN

(Where TP = Correctly predicted sick, FN =
Mistakenly predicted healthy)

X-Axis: False Positive Rate (False Alarm)

Measures how many healthy cases were wrongly

FP
FP +TN
(Where FP = Healthy labeled as sick, TN =
Healthy correctly labeled as healthy)

4. Area Under the Curve (AUC)

The single number summary (e.g., 0.99 for Soil) is
calculated using an Integral. It represents the
prob- ability that the model will rank a randomly
The graph visualizes the trade-off between the
equation for Sensitivity (TPR) and the equation
for False Alarms as we slide the threshold across
all probabilities.
potential accuracy of five models that can be
useful for identifying diseases, soil quality, or the
appearance of weeds. Identify success on the
vertical axis means identifying success consists of
selecting the right problem. Errors on the

Its aim is to evaluate the

horizontal axis means errors consist of false alarm.
Models closest to the top left should be chosen. All
of those models are superior, much above the
diagonal ’guessing’ line. The winner again is Soil
Quality, modeled by Brown, which not only scales
up at high precision at but is also followed very
closely by the two Health and Diseases models.
With its AUC being above 0.90 for all, it proves
the reliability of the Al tools when they are
applied for the purpose of automation of farm
management as given Figure.4.

Combined ROC Curves: Agriculture Analysis

)JJ’_'

0.8 4

o
o

True Positive Rate (Sensitivity)
14
s

0.2

0.0 4

—— Disease (Bimari) - AUC = 0.95

—— Health (Sehat) - AUC = 0.96

—— Height (Qad - Tall/Short) - AUC = 0,93
—— soil (Mitti - Good/Bad) - AUC = 0.99

0.0 0.2

0.4

0.6 0.8 10

False Positive Rate (False Alarm)

flagged.

Figure 4: Statistics machine learning and medical testing

7 Result

Most Popular Technology CNNs (Deep Learning)
- currently the most preferred model, utilized in
the greatest number of papers (8).They are used
twice as often as the next method in the list of

preferred approaches, namely Random Forest (4
studies). Top Application Fields Land and Soil
Management is the most investigated domain
within agriculture (27.8).Disease Management and
Weed Control come right after, contributing 22.2
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each in research. It is clear that the use of Deep
Learning (CNNs) by researchers is focused

specifically in the areas of soil, crop diseases, and
weed-related problems as given Figure 5.

Machine Learning & Deep Learning in Sustainable Agriculture (Results 2023-2025)

Frequency of Al Models in Reviewed Literature

Number of Studies

04
CNNs (Deep Learning)Random Forest SVM / ANN LST™M Digital Twin
Al/ML Models

Research Distribution by Agricultural Domain

Pest Mgmt

Post-Harvest

11.1% Yield Prediction

Land & Soil Mgmt Disease Mgmt

Weed Control

Figure 5: Machine Learning and Deep Learning in Sustainable Agriculture

8 Discussion

As has been showcased in the analysis, the
dominant model is Deep Learning, or CNNs;
primarily, the drivers are visual tasks Disease and
Weed Management have combined coverage of of

research. On the other hand, Land Soil
Management remains the leading individual
domain, at 27.8 leveraging these technologies in
its- quest for optimized sustainable resource usage
as given Figure 6.

Machine Learning
Types

Supervised Semi-supel
Learning Learning

Continuous

Categorical
Target Variable Target Variable

Medical
Imaging

L
Learning
Target variable

Customer Market Basket
Segmentation Analysis

Reinforcement
Learning

Target variable
not available

-
Target Variable Target Variable

Lane-finding
on GPS data

Driverless
Cars

Optimized
Marketing

Text
Classification

Figure 6: Machine Learning and Deep Learning models for agricultural
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9 Conclusion

The convergence of ML and DL technologies in
agriculture marks a criticalprogress in meeting the
chal- lenges that are faced globally, for instance,
food insecurity,climate variability, and resource
constraints. This comprehensive review assesses the
use of these technologies on differentagricultural
processes, such as crop choice, land
observation,management, water, soil, nutrient
management, pest, diseasecontrol, and post-harvest
management. The results highlight therole of ML
and DL in making datadriven decisions,
whichincreases the accuracy of agricultural
practices, as well as enhances
resourceefficiency.Despite this progress, there are
still a number of challenges, including a lack of
multimodal data sets, problems with the modeling
process,scalability, interpretability, and realtime
applicability. To address theselimitations, the
development of robust datasets that fuse
satelliteimagery, loT sensors, and climate forecasts
is vital. Additionally, transferlearning methods
might assist with alleviating problems resulting
from a lack of available data, especially inregions
with limited agricultural data. Future research
should prioritize the integration of ML/DL
models with IoT systems to facilitate real-
timeanalytics, which helps in making improved
decisions.The synergistic potential of ML, and DL
specifically, has been largely unexploited within
the agricultural sector. There are certain
application areas, such as yield prediction,besides
pest management, research has  vyielded
contradictory findings.
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