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Abstract

Keywords
Surgical Workflow Recognition, ~Recognizing the workflow of surgeries is really important for automating tasks and
Multimodal Data Fusion, Graph making sure patients are safe. When the data gets corrupted it becomes a big
Convolutional Networks (GCN), problem. This document talks about an approach that uses graphs and combines
Robotic-Assisted Surgery, what we see and the movement of things to make things more accurate even when

MDGNe:t. conditions are tough. The Multimodal Disentanglement Graph Network or
MDGNet for short looks at how what we see. The movement of things work
together using a special framework to make sure the features match up. The
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Surgical workflow recognition system to work. The Surgical workflow recognition
system is important, for safety and the Multimodal Disentanglement Graph
Network helps it to work more accurately. The model achieved accuracies of

Copyright @Author 86.87% and 92.38% on two datasets, demonstrating effectiveness in addressing
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data corruption issues and advancing automated surgical workflow recognition.

INTRODUCTION

The field of data science is changing a lot right
now. This is happening because artificial
intelligence and robotic-assisted invasive surgery
are being used together [1]. New surgical
platforms, such as the da Vinci system, are very
precise and stable; however, we are still far from
having fully autonomous surgical assistance [2].
Surgical data science is very important here, and
Surgical Workflow Recognition is a central part

of this evolution. Essentially, this means a system
can recognize what is happening during surgery
and identify each step in realtime [3]. Modern
platforms are helping to make this recognition a
reality, which is crucial for keeping patients safe,
helping doctors make decisions during
operations, and ensuring surgeons are trained in
a standardized way all around the world [4,5]. As
shown in figure 1.
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Figure 1: Comparison between the vision-based workflow recognition framework and the multimodal
workflow recognition framework.

While deep learning models work well in
controlled environments, they often struggle in
real-world clinical settings because the data can
get messy. When surgeons are operating, you
cannot always see what is going on because of
smoke, bleeding, and fog on the camera lens [6].
This makes it difficult to rely solely on visual
data. Additionally, data is being
transmitted, technical problems can add noise to
the movement signals. Vision-based methods are
great at capturing the "space" of the surgery, but
they are easily affected by these
obstructions [7]. On the other hand, movement
data from robotic arms provides very precise
information about motion, but it lacks the
environmental context that video provides [8]. To
deal with these problems, researchers have started
to combine video and movement data, an
approach called multimodal fusion [9]. Recent
studies are trying to bring the strengths of both
vision and kinematics together to get a more
complete picture of the procedure [10].

However, when systems work with many types of
data, they often have trouble separating the
important information from the unnecessary

when

visual

noise around it. To fix this, we developed a
system  called the  Multimodal  Graph
Representation network with Adversarial Feature
Disentanglement (GR-AFD). Our framework uses
a Multimodal Disentanglement Graph Network
(MDGNet) to understand the complicated
connections between different types of data as
shown in figure 2. We also use an adversarial
strategy to make sure the model works well even
when data changes or gets worse.

Research Highlights and Contributions: To
ensure professional rigor and clinical relevance,
this study identifies the following core
contributions:

4 Robust Framework Development: A
multimodal  graph-based
designed to handle up to 50% data corruption in
surgical video streams.

4 Adversarial
Implementation  of a

novel architecture

Disentanglement:
Vision-Kinematic
Adversarial (VKA) framework to isolate surgical
signals from environmental noise.

v Contextual Calibration: A specialized
decoder that strengthens output confidence and
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ensures the system remains reliable during sensor
failures.

v Benchmark Validation: State-of-the-art
performance demonstrated on the Cholec80 and
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Figure 2: High-level conceptual overview of the proposed multimodal system. By integrating visual and
kinematic streams, the GR-AFD framework overcomes the limitations of single-source data processing in
surgical environments

Related Work:

2.1. Surgical Workflow Recognition:

In the past people used ways to figure out what
was going on during surgery like Hidden Markov
Models. These methods were alright. They had a
hard time with complicated surgeries. Then deep
learning came along. Changed things. Models,
like CNNs and LSTMs became the norm because
they could look at each frame of a video and
remember what happened in the frame before
that. However even these new models have a
problem: they are trained on video that is perfect.
Surgical Workflow Recognition is still not perfect
because these models are trained on video, not
real Surgical Workflow Recognition situations.
When doctors are doing a surgery sometimes
there is smoke in the way or the camera gets
dirty. In these situations, these computer models
can get really confused. They give the wrong
answer. This is a problem because these models
are supposed to be helping the doctors not
making things worse. The computer models are
looking at the surgery through the camera so if
the camera is dirty or there is smoke the models
do not know what is going on. This means the
models can make mistakes and give the doctors
information, about the surgery.

2.2. Multimodal Data Fusion
Because the video is not always reliable
researchers started looking at data like the

movement signals from robotic arms this is what
we call multimodal data fusion or kinematics.
Multimodal data fusion is when we combine
video and kinematics. Some people just put the
video and kinematics data together while others
use something called attention mechanisms to
tell the model which multimodal data's more
important at a certain time. The problem with
most of these multimodal data fusion systems is
that they assume both the video and the
movement data from the arms are clean which is
not always the case, with multimodal data fusion.
The systems they are using do not have a way to
handle noise or corruption in the medical signals,
which happens a lot in real hospitals. Medical
signals can get noisy or corrupted. This is a big
problem. The medical signals are not always clear.
This can cause issues. Noise or corruption, in the
signals is something that happens often in real

hospitals [41-45].

2.3. Graph Representation Learning

Recently people have started using a method
called Graph Convolutional Networks. Graph
Convolutional Networks are really useful. Of just
looking at pixels Graph Convolutional Networks
treat the surgery like a map. On this map the
tools and organs are like points that are
connected to each other. This way of doing
things is much smarter because Graph
Convolutional ~ Networks  understand  the
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relationship between the surgeon’s tool and the
patient’s  body. However, using Graph
Convolutional Networks with two types of data
like video and kinematics, at the same time is still
very hard. There is also a lack of research on how
to make these graphs "robust" so they don't break
when the data is poor. This is exactly what our

GR-AFD framework tries to fix.

3. Methodology

3.1.2. Graph Attention Network

Graph Attention Networks or GATs for short are
really good at figuring out what is important in a
graph. They do this by using a kind of attention
that looks at each node and decides how much it
matters. The great thing about Graph Attention
Networks is that they can do all of this without
needing to know everything about the graph.
They also do not need to do a lot of math which
makes them faster. Graph Attention Networks
learn how to pay attention to the things so they
can combine different kinds of information in a
way that makes sense. This means they can focus
on the things that're really important and
understand how different things are related to
each other. Graph Attention Networks are good
at this because they can learn what to pay
attention to and that helps them get an
understanding of the relationships, between
different things. Let the features of the input
nodes be called the input node features. We are

talking about the input node features. The input
node features are what we want to look at.
The input is denoted as: h="{h1,” h2, -+, hN
} 7 hi € RF, where N denotes the number of
nodes and F represents the number of features
associated with each node. The importance of
node j’s feature to node i shall be formulated as:
ei]- = attn(W hl,W_)h]) (1)
where attn : RF' x RF' — R denotes a shared
attentional mechanism. The eij is only computed
for nodes j € Ni, whereNi is some neighborhood
of node i in the graph, thus, enhancing the
model’s capacity to capture accurate relationships
between various modalities.

3.1.3. Overview of the GR-FAD Framework
Our system is called the Multimodal Graph
Representation network with Adversarial Feature
Disentanglement (GR-AFD). The main goal of
the GR-AFD framework is to integrate video data
(V) from the surgical field and movement data
(K) from the robotic arms. These represent two
heterogeneous information streams that must be
merged effectively. Unlike conventional models
that simply concatenate features, GR-AFD is
designed to remain stable even when the input
data is degraded. The core innovation of GR-
AFD is its ability to separate "task-relevant
features" from "environmental noise," As shown
in figure 3.
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Figure 3: Block diagram of the GR-AFD framework. The system architecture illustrates the integration
of multimodal inputs and the adversarial disentanglement process used to isolate surgical task signals.
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such as surgical smoke or sensor jitter. Mathematically, we represent the disentanglement of the feature

space as shown in eq. 2:

F = &_task(V,K) @ ®_noise(V,K)

2)

Where @_task isolates the essential surgical signals required for phase recognition [26].

3.1.3 Multimodal Disentanglement Graph
Network

We want to introduce the Multimodal
Disentanglement Graph Network, which is also
called MDGNet to work with embeddings that
come from vision and kinematic data. We get
information from a robotic surgical platform.
This platform has arms that can move in many
ways. Each arm can record degrees of freedom,
which means it can move and turn in three
dimensions. For each arm we use a 7-dimensional
vector to show what it is doing. This vector
includes the position of the arm the angles it is
turned which are called roll, pitch and yaw and
how open the gripper's. The Multimodal
Disentanglement Graph Network or MDGNet
helps us make sense of all this information, from
the arms and the vision data. The robotic arms
have some features that help us understand how
they move. We take these features from both
arms. Add some extra information about how
hard they are gripping things. This extra
information comes from something called the
MISAW dataset. When we put all this together
we get a detailed description of what the arms are
doing at any given moment. This description is
like a list of numbers that tells us everything,

about the arms movements. The data from frames
is not easy to understand because it is scattered
and complicated. So we need to look at how
things change over time to really learn from it. To
do this we use a tool that looks at time in two
ways at the same time. This tool uses two kinds of
models: one is called Long Short-Term Memory
and the other is called Temporal Convolutional
Network.The Temporal Convolutional Network
looks really closely at how thingsre connected
over time and it does this by looking at lots of
different scales. This helps us see the details and
the big picture. The Long Short-Term Memory
model is good at seeing how things are connected
over a time. It does this by remembering what
happened before and using that to understand
what is happening now.We use both of these
models together to get an understanding of the
data. The Temporal Convolutional Network and
the Long ShortTerm Memory model work
together to help us see how things change and
connect over time. This is important, for frame
kinematic data because it is hard to understand
on its own. The last step is to get the movement
representation. We do this by taking the average
of what both the time based encoders give us
which can be written as:

xkt = [LSTM(xt) + TCN(xt)] X 0.5 3)

Where the TCN represents the capture detailed
relations between time stamps within the
kinematics data. The LSTM maps the previous
kinematics vector and previous hidden state to a
new hidden state, capturing the long-range
dependencies within the kinematic data

When we look at how things move over a
distance we take the movement information from
the left and the right and put them together
when we are training. This way of doing things
works better, than looking at the left and the
right separately. We also want to make sure we
are using all the information we can from the

pictures. So we break down the picture
information into what's happening in space and
what is happening in frequency. This helps us get
an understanding of what is going on because we
get different kinds of information from each of
these views of the picture. Surgical videos contain
rich and complex visual information, including
subtle  instrument motions, fine-grained
procedural variations, and visually similar
backgrounds across phases, making accurate
phase discrimination challenging. While most
existing multimodal graph networks rely
primarily on spatial-domain features, frequency-
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domain  representations  preserve  low-level
statistical and modality-specific information.
Therefore, explicit supervision is introduced by
jointly mining spatial and frequency domains,
enabling the model to extract complex visual
patterns that may not be discernible in raw
spatial representations. We use tools like wavelet
transforms and Fourier amplitude spectra to get
lots of details, about the structure and texture of

input is not perfect. We want our system to work
with types of inputs and not get confused when
something is a little wrong. So we use these tools
to make sure the system is strong and can handle
problems. The model uses wavelet transforms to
look at image features in different ways so it can
see big things and small things like edges and
corners and textures. This helps the model work
well even when the image is not perfect, like

when it's noisy. The way the model gets these
features from the wavelet is defined as:

things. These tools help us keep the information
and make our system work better even when the
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To go along with looking at the details of a picture we use something called Fourier amplitude spectra to get
a sense of the frequency of things in the picture. This helps us see the textures and patterns that make up
the image. The way we show this with Fourier is defined as:

w H
.hp wq
F(p, q) — x (h, W) e—Zmﬁ e—ZmW
FS(p.q) = [R*(p,q) + I*(p, ]2 ©)

The amplitude spectrum of something is figured out from the imaginary parts and this is called FS(p,q). So
FS(p,q) is really the amplitude spectrum that we get from these imaginary components. For visual data in
the spatial, wavelet, and Fourier domains, a unified feature extraction strategy is adopted. .Given the spatial
domain as an example: Itt € {1,2,-,T}denote the image frames from the video
sequence. Wefirstutilizethecustom-trainedResNet-18. A custom-trained ResNet-18 is employed as the visual
feature extraction backbone, transforming input RGB images of size 224 x 3 RGB images into a spatial
feature representation. Then, TCN is implemented to extract video features xi t ,t € {1, 2,---,T}with long-
range temporal patterns from a series of frame-wise features. The process can be formulated as:

x{ = TCN{Dropout [ReLU[CNN(I,)]]} (6)

where a dropout rate of 0.5 is used to mitigate overfitting. The same extraction strategy is applied to wavelet
and Fourier-domain images, yielding temporal feature sequences. The features of a node are made better
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through a process that focuses on the parts. For instance, when we look at the embedding we have a rule

that helps us update the node. This rule is defined as:
K

CxD)' = |l [laaW'sxi +awW¥xi +aW xf + agWxi] (D)
k=1
Where K denotes the number of attention heads and W is what we use for transformations that are specific
to each modality. We use the softmax function to normalize the attention coefficients. This means we take
the attention coefficients and normalize them using softmax. The softmax function helps us with this
process, for the attention coefficients of W.

exp(e;
a;w = softmax(e;,) = P(euw )
jetiw.re exp(ei;)
eiw = LeakyReLU(CaT [W ni||W nw]) (8)

The attention mechanism helps the model focus on the connections within the data and between different
types of data. This means it can pick out the relationships and ignore the information that is not relevant to
the model. The attention mechanism is really good at figuring out what is important for the model like the
relationships within the data and the relationships, between types of data. So we want to bring information
from different sources into one place where it can be understood together. To do this we use a tool called a
discriminator. This tool figures out if the information comes from something that is moving, like kinematic
or if it comes from something that we can see, like visual. The discriminator works like this:

D(x]) = Sigmoid {1{Tanh [l LeakyReLU(l(x. ) II}} (9)

wherej € {i,w,f k}represents different modality ,andl(-) denotes a linear transformation. The discriminator

D aims to differentiate the xk t from kinematic modality as false but xf , x}” , and x[ from visual modality
as true.

LAL = [Lf al(x{“c) + Ltru ((x:“ 'xl‘t/v 'x{ )] X 0'5'
Ly =log (1 = D(xK)),
Lery = log(D(x{)) + log(D(x¥ )) + log (D (x{)) (10)
We use a way to combine two types of information: what we see and how things move and how things are

connected. We combine these two types of information the vision- feature embeddings and the graph
output embeddings and then put them into the prediction encoder. The vision-kinematic embeddings are:

Ev—k = LG I x I x[, 0 xf) (1D
The graph output embeddings can be expressed as:

Eg = 1[GAT x,x¥,x/,x/)] (12)
where [(-) represents the linear function. Then, the prediction encoder input is formulated as:
E = aE,_ + BE, (13)

For optimization, we use cross-entropy loss but incorporate calibration by amplifying logits during GNN
training. For a model [, we set {f,y} are the pair of the input feature and the ground truth label, and py =
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I(f,y) is the output probability that [l predicts a label y for an input feature f. The predicted confidence is p
= max Py, and the label that [ predicts is y = argmax py. The conventional cross-entropy loss can be

expressed as:

K
Lep = —Zpilogﬁi

(14)
i=1
The relationship between cross-entropy and KL-divergence is:
DKL(P II'P) = H(P) — L¢g (15)
Where H(P) = —YK i = 1pi logpi is a constant ,To improve calibration, we amplify logits to increase

model confidence and introduce a minimal-entropy regularization term. This term, denoted as the
regularization term , the new loss function can be formulated as:

Leg = Leg — APH(P)
K K

= Z pilogpi — A Z pi'pi log'pi
i=1 i=1

K
- —2(1 + Api )pilog'pi (16)

i=1

A is set to 0.02, which is proven to be the most effective parameter by our experiments. Therefore, our final

loss function can be expressed as:

L =vykrecce +8L,  (17)
y and & are the loss ratios, which are also empirically confirmed through the experiments

3.2. The MDGNet Architecture:

Inside the GR-AFD framework, we implement a
specialized network called MDGNet. This acts as
the "brain" of the system, constructing a dynamic
graph where video embedding and kinematic
movement data are treated as interconnected
nodes. MDGNet does not analyze frames in
isolation; instead, it captures the spatiotemporal
relationship between surgical tools and patient
tissue over time [27]. To ensure the system is

reliable for clinical use, we utilize a Contextual
Calibrated Decoder at the output layer. This
decoder serves as a high-level "doublecheck"
mechanism. It calculates a confidence score for
each prediction, ensuring the model is statistically
certain before it classifies a surgical phase as
shown in Figure 4. This calibration is essential
for preventing the model from providing
misleading information to the surgeon during a
high-stakes procedure [28].
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Block Diagram of the MDGNet Workflow for Surgical Phase Recognition
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Figure 4: Block diagram of the proposed MDGNet architecture illustrating multimodal feature
extraction, graph-based fusion, adversarial feature disentanglement, and contextual calibrated decoding.

3.3. Datasets and Training

To validate the robustness of our system, we
tested GR-AFD on two benchmark surgical
datasets: Cholec80 and HeiChole [29]. Cholec80
of 80 high-definition
gallbladder surgeries, while HeiChole provides
synchronized video and robotic kinematic data.
To simulate real-world hospital conditions, we
intentionally introduced artificial "noise" into the

consists videos of

Table 1: Datasets

testing sets, including visual occlusions and signal
dropouts. The model was implemented using the
PyTorch library and trained on an NVIDIA RTX
GPU system [30]. We used a Cross-Entropy loss
function to optimize the phase recognition
accuracy across both datasets in Table 1.

Phases  Title Clinical Description
P1 Preparation Insertion of trocars and initial camera positioning.
P2 Calot Triangle Dissection Exposure of the cystic duct and cystic artery.
P3 Clipping and Cutting Ligation and division of the cystic structures.
P4 Gallbladder Dissection Separation of the gallbladder from the liver bed.
P5 Specimen Packaging Placing the gallbladder into the retrieval bag.
P6 Cleaning and Closure Final inspection for bleeding and removal of instruments.
4. Results nature, yet GR-AFD maintained a robust

4.1. Accuracy Performance

We evaluated the performance of the GR-AFD
model in comparison to single-modality baselines
that rely exclusively on either video or kinematic
movement data. On the Cholec80 dataset, GR-
AFD achieved a toptier accuracy of 92%,
consistently outperforming the video-only models
we tested [31]. The HeiChole dataset presented a
greater challenge due to its complex multimodal

performance with an accuracy of approximately
89%. These results indicate that our model is
highly effective at identifying surgical phases
correctly, which is the primary objective of the
system [32].

4.2. Performance with "Messy" Data
A critical part of our study was testing how the
model functioned under "noisy" or "messy"
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conditions. We introduced synthetic noise—
ranging from 25% to 50%—into the surgical
videos to simulate real-world issues like surgical
smoke or sensor glitches [33]. While most

100

standard models experienced a significant
performance drop, often exceeding 20%, the GR-
AFD model remained remarkably resilient

90

80 4

70 A

Phase Recognition Accuracy (%)

60 -

50

—&— Standard Video-Only
—— GRAD (Proposed)
» — -
0 25 50

Data Corruption Level (%)

Figure 5: Robustness analysis comparing GR-AFD against standard baselines under varying degrees of
data corruption (0% to 50%). The GR-AFD framework maintains high accuracy despite significant
environmental noise.

Even in high-smoke scenarios, the accuracy only
dropped slightly as shown in Figure 5. This is
because the  Adversarial Disentanglement
component of our framework successfully
isolated the "noise" and allowed the model to
focus purely on the surgical task signals [34].

4.3. Comparison with Other Methods:
When we benchmarked GR-AFD against current
"State-of-the-Art" (SOTA) models, we found that

Table 2: Data quality degraded by models

it offered superior consistency. We observed that
many existing models are either fast but fail when
the camera lens is obscured, or they are accurate
but too computationally heavy for real-time use
[35]. GR-AFD strikes a professional balance; it is
efficient enough to support real-time robotic
surgery while remaining accurate even when the
operating room environment becomes difficult or
the data quality degrades

Model Cholec80 Accuracy HeiChole Accuracy
Video-Only 84% 79%
Kinematic-Only 72% 75%
GRAD (Ours) 92% 89%
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4.4 Confusion Matrix Analysis

Confusion Matrix For GR-AFD Model

4
p1 JEE 1 0 0 0 0
3
e
ap31 0 0 4 0 0 0 3
.
(]
2 2
L2
PS{ 0 0 0
L1
p6{ 0O 0 0
0
P1 P2 P3 PS5 P6

Predicted Label

Figure 5: Confusion matrix illustrating the classification performance of the proposed GR-AFD
framework across six surgical phases.

In Figure 5. The confusion matrix demonstrates
strong diagonal dominance, indicating high
classification accuracy across all surgical phases.
Early and late surgical phases such as Preparation
(P1) and Cleaning and Closure (P6) are
recognized with particularly high accuracy. Minor
confusion occurs between temporally adjacent
phases, which is expected due to their procedural
similarity. Overall, the results confirm the
robustness and reliability of the proposed GR-
AFD framework.

5. Discussion

Our study shows that using video and robotic
movement data together is the way to go for
Artificial Intelligence in the clinical space [36].
The big thing we found out is that the GR-AFD
model works well even when things get
complicated. In an operating room, there is
usually smoke around, and the GR-AFD model is
one of the few that can really deal with it,
ensuring the system remains helpful even in
difficult environments [37]. The GR-AFD

framework is really good at what it does because

it can look at kinematic information together. It
can also deal with wrong inputs. Other methods
that only look at one thing like the video do not
work well when the video is hard to see. The GR-
AFD framework uses kinematic signals to keep
making good predictions. The GR-AFD
framework also has a mechanism that helps it
focus on the important things it needs to do for
surgery and not get distracted by things like
smoke or blur, in the video. The GR-AFD
framework is better because it can do this.

The graph-based formulation is really useful
because it helps the model understand the
relationships between surgical tools and anatomy
and motion over time. This is very important in
procedures where things change gradually. The
contextual calibrated decoder makes the
predictions more stable by reducing mistakes that
happen when the model is too confident which is
critical in environments where safety is a big
concern. The model and the surgical tools and
anatomy and motion, over time all need to work
smoothly. Despite these strengths, the current
study is limited to laparoscopic cholecystectomy
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procedures. While the results are promising,
future work should validate the generalizability of
the GR-AFD framework on a wider range of
surgical procedures and robotic platforms. Model
optimization and deployment on low-resource
clinical systems also remain important directions
for future research.

One thing that is not so good about this work is
that we mostly tried it out on surgeries to remove
gallbladders, which is what we call Cholec80
surgeries. In the future, we should see how the
model works for other operations like heart
surgeries or lung surgeries to prove its versatility
[38]. The model is really good, and we want to
make it even better. We also think it would be
great to make the model "lighter" so it can run on
hospital computers without needing a big,
expensive computer. This way, the model can be
used in hospitals for heart and lung surgeries
worldwide, supporting the transition toward the
digital operating room [39-40].

6. Conclusion

In this conclusion, this paper is about the GR-
AFD framework. The GR-AFD framework is a
way to recognize surgical workflow. It uses graphs
and other things to learn and understand what is
happening. The GR-AFD framework looks at
pictures and movements to figure things out. It
does this with something called the MDGNet
architecture. The GR-AFD framework is really
good at recognizing things even when the data's
not perfect. The people who made the GR-AFD
framework tested it on the Cholec80 and
HeiChole datasets. The GR-AFD framework did
better than methods that only look at one thing
or that look at many things in a simple way. The
GR-AFD framework is really good, at what it
does. The ability of the proposed framework to
maintain stable predictions in noisy operating
room environments highlights its potential for
real-time clinical deployment. By improving
reliability and robustness, GR-AFD contributes
toward safer and more intelligent surgical
assistance systems. Future research will focus on
extending this framework to additional surgical
procedures and optimizing its computational
efficiency for real-world hospital environments.
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