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Abstract 
Recognizing the workflow of surgeries is really important for automating tasks and 
making sure patients are safe. When the data gets corrupted it becomes a big 
problem. This document talks about an approach that uses graphs and combines 
what we see and the movement of things to make things more accurate even when 
conditions are tough. The Multimodal Disentanglement Graph Network or 
MDGNet for short looks at how what we see. The movement of things work 
together using a special framework to make sure the features match up. The 
Contextual Calibrated Decoder uses information about time and context to make 
the system more resilient to changes and corruption of data. This helps the 
Surgical workflow recognition system to work. The Surgical workflow recognition 
system is important, for safety and the Multimodal Disentanglement Graph 
Network helps it to work more accurately. The model achieved accuracies of 
86.87% and 92.38% on two datasets, demonstrating effectiveness in addressing 
data corruption issues and advancing automated surgical workflow recognition. 
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INTRODUCTION
The field of data science is changing a lot right 
now. This is happening because artificial 
intelligence and robotic-assisted invasive surgery 
are being used together [1]. New surgical 
platforms, such as the da Vinci system, are very 
precise and stable; however, we are still far from 
having fully autonomous surgical assistance [2]. 
Surgical data science is very important here, and 
Surgical Workflow Recognition is a central part 

of this evolution. Essentially, this means a system 
can recognize what is happening during surgery 
and identify each step in real-time [3]. Modern 
platforms are helping to make this recognition a 
reality, which is crucial for keeping patients safe, 
helping doctors make decisions during 
operations, and ensuring surgeons are trained in 
a standardized way all around the world [4,5]. As 
shown in figure 1. 
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Figure 1:  Comparison between the vision-based workflow recognition framework and the multimodal 

workflow recognition framework. 
 
While deep learning models work well in 
controlled environments, they often struggle in 
real-world clinical settings because the data can 
get messy. When surgeons are operating, you 
cannot always see what is going on because of 
smoke, bleeding, and fog on the camera lens [6]. 
This makes it difficult to rely solely on visual 
data. Additionally, when data is being 
transmitted, technical problems can add noise to 
the movement signals. Vision-based methods are 
great at capturing the "space" of the surgery, but 
they are easily affected by these visual 
obstructions [7]. On the other hand, movement 
data from robotic arms provides very precise 
information about motion, but it lacks the 
environmental context that video provides [8]. To 
deal with these problems, researchers have started 
to combine video and movement data, an 
approach called multimodal fusion [9]. Recent 
studies are trying to bring the strengths of both 
vision and kinematics together to get a more 
complete picture of the procedure [10]. 
However, when systems work with many types of 
data, they often have trouble separating the 
important information from the unnecessary 

noise around it. To fix this, we developed a 
system called the Multimodal Graph 
Representation network with Adversarial Feature 
Disentanglement (GR-AFD). Our framework uses 
a Multimodal Disentanglement Graph Network 
(MDGNet) to understand the complicated 
connections between different types of data as 
shown in figure 2. We also use an adversarial 
strategy to make sure the model works well even 
when data changes or gets worse. 
Research Highlights and Contributions: To 
ensure professional rigor and clinical relevance, 
this study identifies the following core 
contributions: 
✓ Robust Framework Development: A 
novel multimodal graph-based architecture 
designed to handle up to 50% data corruption in 
surgical video streams. 
✓ Adversarial Disentanglement: 
Implementation of a Vision-Kinematic 
Adversarial (VKA) framework to isolate surgical 
signals from environmental noise. 
✓ Contextual Calibration: A specialized 
decoder that strengthens output confidence and 
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ensures the system remains reliable during sensor 
failures. 
✓ Benchmark Validation: State-of-the-art 
performance demonstrated on the Cholec80 and 

HeiChole datasets, outperforming standard 
single-modality baselines. 

 

 
Figure 2: High-level conceptual overview of the proposed multimodal system. By integrating visual and 

kinematic streams, the GR-AFD framework overcomes the limitations of single-source data processing in 
surgical environments 

 
Related Work: 
2.1. Surgical Workflow Recognition: 
In the past people used ways to figure out what 
was going on during surgery like Hidden Markov 
Models. These methods were alright. They had a 
hard time with complicated surgeries. Then deep 
learning came along. Changed things. Models, 
like CNNs and LSTMs became the norm because 
they could look at each frame of a video and 
remember what happened in the frame before 
that. However even these new models have a 
problem: they are trained on video that is perfect. 
Surgical Workflow Recognition is still not perfect 
because these models are trained on video, not 
real Surgical Workflow Recognition situations. 
When doctors are doing a surgery sometimes 
there is smoke in the way or the camera gets 
dirty. In these situations, these computer models 
can get really confused. They give the wrong 
answer. This is a problem because these models 
are supposed to be helping the doctors not 
making things worse. The computer models are 
looking at the surgery through the camera so if 
the camera is dirty or there is smoke the models 
do not know what is going on. This means the 
models can make mistakes and give the doctors 
information, about the surgery. 
 
2.2. Multimodal Data Fusion 
Because the video is not always reliable 
researchers started looking at data like the 

movement signals from robotic arms this is what 
we call multimodal data fusion or kinematics. 
Multimodal data fusion is when we combine 
video and kinematics. Some people just put the 
video and kinematics data together while others 
use something called attention mechanisms to 
tell the model which multimodal data's more 
important at a certain time. The problem with 
most of these multimodal data fusion systems is 
that they assume both the video and the 
movement data from the arms are clean which is 
not always the case, with multimodal data fusion. 
The systems they are using do not have a way to 
handle noise or corruption in the medical signals, 
which happens a lot in real hospitals. Medical 
signals can get noisy or corrupted. This is a big 
problem. The medical signals are not always clear. 
This can cause issues. Noise or corruption, in the 
signals is something that happens often in real 
hospitals [41-45]. 
 
2.3. Graph Representation Learning 
Recently people have started using a method 
called Graph Convolutional Networks. Graph 
Convolutional Networks are really useful. Of just 
looking at pixels Graph Convolutional Networks 
treat the surgery like a map. On this map the 
tools and organs are like points that are 
connected to each other. This way of doing 
things is much smarter because Graph 
Convolutional Networks understand the 
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relationship between the surgeon’s tool and the 
patient’s body. However, using Graph 
Convolutional Networks with two types of data 
like video and kinematics, at the same time is still 
very hard. There is also a lack of research on how 
to make these graphs "robust" so they don't break 
when the data is poor. This is exactly what our 
GR-AFD framework tries to fix. 
 
3. Methodology 
3.1.2. Graph Attention Network 
Graph Attention Networks or GATs for short are 
really good at figuring out what is important in a 
graph. They do this by using a kind of attention 
that looks at each node and decides how much it 
matters. The great thing about Graph Attention 
Networks is that they can do all of this without 
needing to know everything about the graph. 
They also do not need to do a lot of math which 
makes them faster. Graph Attention Networks 
learn how to pay attention to the things so they 
can combine different kinds of information in a 
way that makes sense. This means they can focus 
on the things that're really important and 
understand how different things are related to 
each other. Graph Attention Networks are good 
at this because they can learn what to pay 
attention to and that helps them get an 
understanding of the relationships, between 
different things. Let the features of the input 
nodes be called the input node features. We are 

talking about the input node features. The input 
node features are what we want to look at. 
The input is denoted as: 𝐡 = ⃗ { ℎ1, ⃗ ℎ2, ⋯, ⃗ ℎ𝑁 
} ⃗ ,ℎ𝑖 ∈ ℝ𝐹, where 𝑁 denotes the number of 
nodes and 𝐹 represents the number of features 
associated with each node. The importance of 
node 𝑗’s feature to node 𝑖 shall be formulated as: 

eij  =  attn(W⃗ hi, W⃗ hj)                       (1) 
where 𝑎𝑡𝑡𝑛 ∶ ℝ𝐹′ × ℝ𝐹′ → ℝ denotes a shared 
attentional mechanism. The 𝑒𝑖𝑗 is only computed 
for nodes 𝑗 ∈ N𝑖, where𝐍𝑖 is some neighborhood 
of node 𝑖 in the graph, thus, enhancing the 
model’s capacity to capture accurate relationships 
between various modalities. 
 
3.1.3. Overview of the GR-FAD Framework 
Our system is called the Multimodal Graph 
Representation network with Adversarial Feature 
Disentanglement (GR-AFD). The main goal of 
the GR-AFD framework is to integrate video data 
(V) from the surgical field and movement data 
(K) from the robotic arms. These represent two 
heterogeneous information streams that must be 
merged effectively. Unlike conventional models 
that simply concatenate features, GR-AFD is 
designed to remain stable even when the input 
data is degraded. The core innovation of GR-
AFD is its ability to separate "task-relevant 
features" from "environmental noise," As shown 
in figure 3. 

 

 
Figure 3: Block diagram of the GR-AFD framework. The system architecture illustrates the integration 
of multimodal inputs and the adversarial disentanglement process used to isolate surgical task signals. 
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such as surgical smoke or sensor jitter. Mathematically, we represent the disentanglement of the feature 
space as shown in eq. 2: 
 
F =  𝛷_𝑡𝑎𝑠𝑘(𝑉, 𝐾)  ⊕  𝛷_𝑛𝑜𝑖𝑠𝑒(𝑉, 𝐾)             (2) 
Where Φ_task isolates the essential surgical signals required for phase recognition [26]. 
 
3.1.3 Multimodal Disentanglement Graph 
Network 
We want to introduce the Multimodal 
Disentanglement Graph Network, which is also 
called MDGNet to work with embeddings that 
come from vision and kinematic data. We get 
information from a robotic surgical platform. 
This platform has arms that can move in many 
ways. Each arm can record degrees of freedom, 
which means it can move and turn in three 
dimensions. For each arm we use a 7-dimensional 
vector to show what it is doing. This vector 
includes the position of the arm the angles it is 
turned which are called roll, pitch and yaw and 
how open the gripper's. The Multimodal 
Disentanglement Graph Network or MDGNet 
helps us make sense of all this information, from 
the arms and the vision data. The robotic arms 
have some features that help us understand how 
they move. We take these features from both 
arms. Add some extra information about how 
hard they are gripping things. This extra 
information comes from something called the 
MISAW dataset. When we put all this together 
we get a detailed description of what the arms are 
doing at any given moment. This description is 
like a list of numbers that tells us everything,  

about the arms movements.The data from frames 
is not easy to understand because it is scattered 
and complicated. So we need to look at how 
things change over time to really learn from it. To 
do this we use a tool that looks at time in two 
ways at the same time. This tool uses two kinds of 
models: one is called Long Short-Term Memory 
and the other is called Temporal Convolutional 
Network.The Temporal Convolutional Network 
looks really closely at how thingsre connected 
over time and it does this by looking at lots of 
different scales. This helps us see the details and 
the big picture. The Long Short-Term Memory 
model is good at seeing how things are connected 
over a time. It does this by remembering what 
happened before and using that to understand 
what is happening now.We use both of these 
models together to get an understanding of the 
data. The Temporal Convolutional Network and 
the Long Short-Term Memory model work 
together to help us see how things change and 
connect over time. This is important, for frame 
kinematic data because it is hard to understand 
on its own. The last step is to get the movement 
representation. We do this by taking the average 
of what both the time based encoders give us 
which can be written as: 
 

𝑥𝑘 𝑡 = [𝐿𝑆𝑇𝑀(𝑥𝑡) + 𝑇𝐶𝑁(𝑥𝑡)] × 0.5                                (3) 
 
Where the TCN represents the capture detailed 
relations between time stamps within the 
kinematics data. The LSTM maps the previous 
kinematics vector and previous hidden state to a 
new hidden state, capturing the long-range 
dependencies within the kinematic data 
When we look at how things move over a 
distance we take the movement information from 
the left and the right and put them together 
when we are training. This way of doing things 
works better, than looking at the left and the 
right separately. We also want to make sure we 
are using all the information we can from the 

pictures. So we break down the picture 
information into what's happening in space and 
what is happening in frequency. This helps us get 
an understanding of what is going on because we 
get different kinds of information from each of 
these views of the picture. Surgical videos contain 
rich and complex visual information, including 
subtle instrument motions, fine-grained 
procedural variations, and visually similar 
backgrounds across phases, making accurate 
phase discrimination challenging. While most 
existing multimodal graph networks rely 
primarily on spatial-domain features, frequency-
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domain representations preserve low-level 
statistical and modality-specific information. 
Therefore, explicit supervision is introduced by 
jointly mining spatial and frequency domains, 
enabling the model to extract complex visual 
patterns that may not be discernible in raw 
spatial representations. We use tools like wavelet 
transforms and Fourier amplitude spectra to get 
lots of details, about the structure and texture of 
things. These tools help us keep the information 
and make our system work better even when the  
 

input is not perfect. We want our system to work 
with types of inputs and not get confused when 
something is a little wrong. So we use these tools 
to make sure the system is strong and can handle 
problems. The model uses wavelet transforms to 
look at image features in different ways so it can 
see big things and small things like edges and 
corners and textures. This helps the model work 
well even when the image is not perfect, like 
when it's noisy. The way the model gets these 
features from the wavelet is defined as: 

𝐴𝑗(𝑚, 𝑛) = ∑ ∑ 𝑥(ℎ, 𝑤)

𝐻

ℎ=1

𝑊

𝑤=1

⋅ 𝜙𝑗,𝑚(ℎ) ⋅ 𝜙𝑗,𝑛                                         

𝐷𝑗
𝐿𝑍(𝑚, 𝑛) = ∑ ∑ 𝑥(ℎ, 𝑤)

𝐻

ℎ=1

𝑊

𝑤=1

⋅ 𝜙𝑗,𝑚(ℎ) ⋅ 𝜓𝑗,𝑛
𝑍 (𝑤)                                   

𝐷𝑗
𝑍𝐿(𝑚, 𝑛) =  ∑ ∑ 𝑥

𝐻

ℎ=1

𝑊

𝑤=1

(ℎ, 𝑤) ⋅ 𝜓𝑗,𝑚
𝑉 (𝑤) ⋅ 𝜙𝑗,𝑛(𝑤)                           (4) 

𝐷𝑗
𝑍𝑍(𝑚, 𝑛) =  ∑ ∑ 𝑥

𝐻

ℎ=1

𝑊

𝑤=1

(ℎ, 𝑤) ⋅ 𝜓𝑗,𝑚
𝑍 (𝑤) ⋅ 𝜙𝑗,𝑛

𝑉  (ℎ)                                   

w𝑎𝑣𝑒𝑙𝑒𝑡(𝑚, 𝑛)  
= [𝐴𝑗(𝑚, 𝑛) ∥ 𝐷𝑗

𝐿𝑍(𝑚, 𝑛) ∥ 𝐷𝑗
𝑍𝐿(𝑚, 𝑛) ∥ 𝐷𝑗

𝑍𝑍(𝑚, 𝑛)] 
To go along with looking at the details of a picture we use something called Fourier amplitude spectra to get 
a sense of the frequency of things in the picture. This helps us see the textures and patterns that make up 
the image. The way we show this with Fourier is defined as: 
 

𝐹(𝑝, 𝑞) =  ∑ ∑ 𝑥

𝐻

ℎ=1

𝑊

𝑤=1

(ℎ, 𝑤) 𝑒−2𝜋𝑖
ℎ𝑝
𝐻  𝑒−2𝜋𝑖

𝑤𝑞
𝑊

   

𝐹𝑆(𝑝, 𝑞) = [𝑅2(𝑝, 𝑞) + 𝐼2(𝑝, 𝑞)]
1
2               (5) 

 
The amplitude spectrum of something is figured out from the imaginary parts and this is called FS(p,q). So 
FS(p,q) is really the amplitude spectrum that we get from these imaginary components. For visual data in 
the spatial, wavelet, and Fourier domains, a unified feature extraction strategy is adopted. .Given the spatial 
domain as an example: 𝐼𝑡,𝑡 ∈ {1,2,⋯,𝑇}denote the image frames from the video 
sequence.Wefirstutilizethecustom-trainedResNet-18. A custom-trained ResNet-18 is employed as the visual 
feature extraction backbone, transforming input RGB images of size 224 × 3 RGB images into a spatial 
feature representation. Then, TCN is implemented to extract video features 𝑥𝑖 𝑡 ,𝑡 ∈ {1, 2,⋯,𝑇}with long-
range temporal patterns from a series of frame-wise features. The process can be formulated as: 
 

𝑥𝑡
𝑖  =  𝑇𝐶𝑁{𝐷𝑟𝑜𝑝𝑜𝑢𝑡 [𝑅𝑒𝐿𝑈[𝐶𝑁𝑁(𝐼𝑡)]]}                       (6) 

 
where a dropout rate of 0.5 is used to mitigate overfitting. The same extraction strategy is applied to wavelet 
and Fourier-domain images, yielding temporal feature sequences. The features of a node are made better 
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through a process that focuses on the parts. For instance, when we look at the embedding we have a rule 
that helps us update the node. This rule is defined as:  

(⃗𝑥𝑡
𝑖)′ =

𝐾
||

𝑘 = 1
 [𝛼𝑖𝑖𝑊𝑖⃗𝑥𝑡

𝑖  + 𝛼𝑖𝑤𝑊𝑤⃗𝑥𝑡
𝑖  + 𝛼𝑖𝑓𝑊𝑓⃗𝑥𝑡

𝑖  +  𝛼𝑖𝑘𝑊𝑘⃗𝑥𝑡
𝑖]             (7) 

Where K denotes the number of attention heads and W is what we use for transformations that are specific 
to each modality. We use the softmax function to normalize the attention coefficients. This means we take 
the attention coefficients and normalize them using softmax. The softmax function helps us with this 
process, for the attention coefficients of W. 

𝑎𝑖𝑤 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑖𝑤) =
𝑒𝑥𝑝(𝑒𝑖𝑤  )

∑ 𝑒𝑥𝑝(𝑒𝑖𝑗)𝑗∈{𝑖,𝑤,𝑓,𝑘}

 

 
𝑒𝑖𝑤 =  𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(⃗𝑎𝑇 [𝑊⃗𝑛𝑖||𝑊⃗𝑛𝑤 ])                         (8) 

 
The attention mechanism helps the model focus on the connections within the data and between different 
types of data. This means it can pick out the relationships and ignore the information that is not relevant to 
the model. The attention mechanism is really good at figuring out what is important for the model like the 
relationships within the data and the relationships, between types of data. So we want to bring information 
from different sources into one place where it can be understood together. To do this we use a tool called a 
discriminator. This tool figures out if the information comes from something that is moving, like kinematic 
or if it comes from something that we can see, like visual. The discriminator works like this: 
 

𝐷(𝑥𝑡
𝑗
 )  =  𝑆𝑖𝑔𝑚𝑜𝑖𝑑 { 𝑙 { 𝑇𝑎𝑛ℎ [ 𝑙 [ 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑙(𝑥𝑡

𝑗
 )) ]]}}      (9) 

 
where𝑗 ∈ {𝑖,𝑤,𝑓,𝑘}represents different modality ,and𝑙(⋅) denotes a linear transformation. The discriminator 
𝐷 aims to differentiate the 𝑥𝑘 𝑡 from kinematic modality as false but 𝑥𝑡

𝑖 , 𝑥𝑡
𝑤 , and 𝑥𝑡

𝑓 from visual modality 
as true. 

 ℒ𝐴𝐿  =  [ ℒ𝑓 𝑎𝑙(𝑥𝑡
𝑘) +   ℒ𝑡𝑟𝑢 ((𝑥𝑡

𝑖 , 𝑥𝑡
𝑤  , 𝑥𝑡

𝑓
 )]  × 0.5, 

ℒ𝑓 𝑎𝑙 = 𝑙𝑜𝑔 (1 − 𝐷(𝑥𝑡
𝑘)), 

 
 ℒ𝑡𝑟𝑢 =  𝑙𝑜𝑔(𝐷(𝑥𝑡

𝑖  ))  +  𝑙𝑜𝑔(𝐷( 𝑥𝑡
𝑤   ))  +  𝑙𝑜𝑔 ( 𝐷 ( 𝑥𝑡

𝑓
)) (10) 

 
We use a way to combine two types of information: what we see and how things move and how things are 
connected. We combine these two types of information the vision- feature embeddings and the graph 
output embeddings and then put them into the prediction encoder. The vision-kinematic embeddings are: 
 

𝐸𝑣 − 𝑘 =  𝑙 (𝑥𝑡
𝑖  ∥  𝑥𝑡

𝑤  ∥  𝑥𝑡
𝑓

, ∥  𝑥𝑡
𝑘  )         (11)  

The graph output embeddings can be expressed as:  
 

𝐸𝑔 = 𝑙 [ 𝐺𝐴𝑇 𝑥𝑡
𝑖  , 𝑥𝑡

𝑤 , 𝑥𝑡
𝑓

, 𝑥𝑡
𝑘)]              (12) 

 
where 𝑙(⋅) represents the linear function. Then, the prediction encoder input is formulated as: 
 

 𝐸 = 𝛼𝐸𝑣−𝑘 + 𝛽𝐸𝑔                                         (13) 
 
For optimization, we use cross-entropy loss but incorporate calibration by amplifying logits during GNN 
training. For a model , we set {𝑓,𝑦} are the pair of the input feature and the ground truth label, and ̂𝑝𝑦 = 
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(𝑓,𝑦) is the output probability that  predicts a label 𝑦 for an input feature 𝑓. The predicted confidence is ̂𝑝 
= max ̂𝑝𝑦, and the label that  predicts is ̂𝑦 = argmax ̂𝑝𝑦. The conventional cross-entropy loss can be 
expressed as: 

 ℒ𝐶𝐸 =  − ∑ 𝑝𝑖 𝑙𝑜𝑔 𝑝 ̂𝑖  

 𝐾

 𝑖=1

                        (14) 

 
The relationship between cross-entropy and KL-divergence is: 
 

𝐷𝐾𝐿(𝑃 ∥  ̂𝑃)  =  ℋ(𝑃) − ℒ𝐶𝐸                                 (15) 
 
Where ℋ(𝑃)  =  −∑𝐾 𝑖 = 1𝑝𝑖 𝑙𝑜𝑔𝑝𝑖 is a constant ,To improve calibration, we amplify logits to increase 
model confidence and introduce a minimal-entropy regularization term. This term, denoted as the 
regularization term , the new loss function can be formulated as:  
 

 ℒCE  =   ℒCE  − λPℋ( ̂P) 

 =  ∑ pi log ̂pi 

 K

 i=1

−  λ ∑ pi ̂pi log ̂pi 

 K

 i=1

 

 

= − ∑(1 + λ̂pi )pi log ̂pi 

 K

 i=1

 (16)  

𝜆 is set to 0.02, which is proven to be the most effective parameter by our experiments. Therefore, our final 
loss function can be expressed as:  
 

ℒ = γ ℒCCE  + δℒAL        (17) 
 𝛾 and 𝛿 are the loss ratios, which are also empirically confirmed through the experiments 
 
3.2. The MDGNet Architecture: 
Inside the GR-AFD framework, we implement a 
specialized network called MDGNet. This acts as 
the "brain" of the system, constructing a dynamic 
graph where video embedding and kinematic 
movement data are treated as interconnected 
nodes. MDGNet does not analyze frames in 
isolation; instead, it captures the spatiotemporal 
relationship between surgical tools and patient 
tissue over time [27]. To ensure the system is 

reliable for clinical use, we utilize a Contextual 
Calibrated Decoder at the output layer. This 
decoder serves as a high-level "double-check" 
mechanism. It calculates a confidence score for 
each prediction, ensuring the model is statistically 
certain before it classifies a surgical phase as 
shown in Figure 4. This calibration is essential 
for preventing the model from providing 
misleading information to the surgeon during a 
high-stakes procedure [28]. 
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Figure 4: Block diagram of the proposed MDGNet architecture illustrating multimodal feature 

extraction, graph-based fusion, adversarial feature disentanglement, and contextual calibrated decoding. 
 
3.3. Datasets and Training  
To validate the robustness of our system, we 
tested GR-AFD on two benchmark surgical 
datasets: Cholec80 and HeiChole [29]. Cholec80 
consists of 80 high-definition videos of 
gallbladder surgeries, while HeiChole provides 
synchronized video and robotic kinematic data. 
To simulate real-world hospital conditions, we 
intentionally introduced artificial "noise" into the  

 
testing sets, including visual occlusions and signal 
dropouts. The model was implemented using the 
PyTorch library and trained on an NVIDIA RTX 
GPU system [30]. We used a Cross-Entropy loss 
function to optimize the phase recognition 
accuracy across both datasets in Table 1. 
 

 
Table 1: Datasets 

Phases Title Clinical Description 

P1 Preparation Insertion of trocars and initial camera positioning. 

P2 Calot Triangle Dissection Exposure of the cystic duct and cystic artery. 

P3 Clipping and Cutting Ligation and division of the cystic structures. 

P4 Gallbladder Dissection Separation of the gallbladder from the liver bed. 

P5 Specimen Packaging Placing the gallbladder into the retrieval bag. 

P6 Cleaning and Closure Final inspection for bleeding and removal of instruments. 

 
4. Results 
4.1. Accuracy Performance 
We evaluated the performance of the GR-AFD 
model in comparison to single-modality baselines 
that rely exclusively on either video or kinematic 
movement data. On the Cholec80 dataset, GR-
AFD achieved a top-tier accuracy of 92%, 
consistently outperforming the video-only models 
we tested [31]. The HeiChole dataset presented a 
greater challenge due to its complex multimodal  

nature, yet GR-AFD maintained a robust 
performance with an accuracy of approximately 
89%. These results indicate that our model is 
highly effective at identifying surgical phases 
correctly, which is the primary objective of the 
system [32]. 
 
4.2. Performance with "Messy" Data 
 A critical part of our study was testing how the 
model functioned under "noisy" or "messy" 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

 
https://thesesjournal.com             | Usman et al., 2026 | Page 262 

conditions. We introduced synthetic noise—
ranging from 25% to 50%—into the surgical 
videos to simulate real-world issues like surgical 
smoke or sensor glitches [33]. While most 

standard models experienced a significant 
performance drop, often exceeding 20%, the GR-
AFD model remained remarkably resilient 

 

 
Figure 5: Robustness analysis comparing GR-AFD against standard baselines under varying degrees of 

data corruption (0% to 50%). The GR-AFD framework maintains high accuracy despite significant 
environmental noise. 

 
Even in high-smoke scenarios, the accuracy only 
dropped slightly as shown in Figure 5. This is 
because the Adversarial Disentanglement 
component of our framework successfully 
isolated the "noise" and allowed the model to 
focus purely on the surgical task signals [34]. 
 
4.3. Comparison with Other Methods: 
When we benchmarked GR-AFD against current 
"State-of-the-Art" (SOTA) models, we found that 

it offered superior consistency. We observed that 
many existing models are either fast but fail when 
the camera lens is obscured, or they are accurate 
but too computationally heavy for real-time use 
[35]. GR-AFD strikes a professional balance; it is 
efficient enough to support real-time robotic 
surgery while remaining accurate even when the 
operating room environment becomes difficult or 
the data quality degrades 

 
Table 2: Data quality degraded by models 

Model Cholec80 Accuracy HeiChole Accuracy 
Video-Only 84% 79% 
Kinematic-Only 72% 75% 
GRAD (Ours) 92% 89% 
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4.4 Confusion Matrix Analysis 

 
Figure 5: Confusion matrix illustrating the classification performance of the proposed GR-AFD 

framework across six surgical phases. 
 
In Figure 5. The confusion matrix demonstrates 
strong diagonal dominance, indicating high 
classification accuracy across all surgical phases. 
Early and late surgical phases such as Preparation 
(P1) and Cleaning and Closure (P6) are 
recognized with particularly high accuracy. Minor 
confusion occurs between temporally adjacent 
phases, which is expected due to their procedural 
similarity. Overall, the results confirm the 
robustness and reliability of the proposed GR-
AFD framework. 
 
5. Discussion 
Our study shows that using video and robotic 
movement data together is the way to go for 
Artificial Intelligence in the clinical space [36]. 
The big thing we found out is that the GR-AFD 
model works well even when things get 
complicated. In an operating room, there is 
usually smoke around, and the GR-AFD model is 
one of the few that can really deal with it, 
ensuring the system remains helpful even in 
difficult environments [37]. The GR-AFD 
framework is really good at what it does because 

it can look at kinematic information together. It 
can also deal with wrong inputs. Other methods 
that only look at one thing like the video do not 
work well when the video is hard to see. The GR-
AFD framework uses kinematic signals to keep 
making good predictions. The GR-AFD 
framework also has a mechanism that helps it 
focus on the important things it needs to do for 
surgery and not get distracted by things like 
smoke or blur, in the video. The GR-AFD 
framework is better because it can do this. 
The graph-based formulation is really useful 
because it helps the model understand the 
relationships between surgical tools and anatomy 
and motion over time. This is very important in 
procedures where things change gradually. The 
contextual calibrated decoder makes the 
predictions more stable by reducing mistakes that 
happen when the model is too confident which is 
critical in environments where safety is a big 
concern. The model and the surgical tools and 
anatomy and motion, over time all need to work 
smoothly. Despite these strengths, the current 
study is limited to laparoscopic cholecystectomy 
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procedures. While the results are promising, 
future work should validate the generalizability of 
the GR-AFD framework on a wider range of 
surgical procedures and robotic platforms. Model 
optimization and deployment on low-resource 
clinical systems also remain important directions 
for future research. 
One thing that is not so good about this work is 
that we mostly tried it out on surgeries to remove 
gallbladders, which is what we call Cholec80 
surgeries. In the future, we should see how the 
model works for other operations like heart 
surgeries or lung surgeries to prove its versatility 
[38]. The model is really good, and we want to 
make it even better. We also think it would be 
great to make the model "lighter" so it can run on 
hospital computers without needing a big, 
expensive computer. This way, the model can be 
used in hospitals for heart and lung surgeries 
worldwide, supporting the transition toward the 
digital operating room [39-40]. 
 
6. Conclusion 
In this conclusion, this paper is about the GR-
AFD framework. The GR-AFD framework is a 
way to recognize surgical workflow. It uses graphs 
and other things to learn and understand what is 
happening. The GR-AFD framework looks at 
pictures and movements to figure things out. It 
does this with something called the MDGNet 
architecture. The GR-AFD framework is really 
good at recognizing things even when the data's 
not perfect. The people who made the GR-AFD 
framework tested it on the Cholec80 and 
HeiChole datasets. The GR-AFD framework did 
better than methods that only look at one thing 
or that look at many things in a simple way. The 
GR-AFD framework is really good, at what it 
does. The ability of the proposed framework to 
maintain stable predictions in noisy operating 
room environments highlights its potential for 
real-time clinical deployment. By improving 
reliability and robustness, GR-AFD contributes 
toward safer and more intelligent surgical 
assistance systems. Future research will focus on 
extending this framework to additional surgical 
procedures and optimizing its computational 
efficiency for real-world hospital environments. 
 

REFERENCES 
Maier-Hein, L.; et al. Surgical data science for 

next-generation interventions. Nat. Biomed. 
Eng. 2017, 1, 691–699. 

Twinanda, A.P.; et al. EndoNet: A Deep 
Architecture for Recognition of Surgical 
Phases. IEEE Trans. Med. Imaging 2016, 36, 
86–97. 

Hashimoto, D.A.; et al. Artificial Intelligence in 
Surgery: Promises and Perils. Ann. Surg. 
2018, 268, 70–76. 

 Garrow, C.R.; et al. Machine Learning for 
Surgical Phase Recognition: A Systematic 
Review. Ann. Surg. 2021, 273,   684–693. 

Meireles, O.R.; et al. SAGES consensus on 
surgical data science. Surg. Endosc. 2021, 
35, 1–10. 

Bodenstedt, S.; et al. Comparative evaluation of 
surgical instrument segmentation. IEEE 
Trans. Med. Imaging 2018, 37, 2450–2461. 

Zisimopoulos, O.; et al. DeepPhase: Periodic 
Energy Function for Learning Surgical 
Phases. MICCAI 2018, 208–216. 

Ahmidi, N.; et al. A Dataset and Benchmarks for 
Segmentation and Recognition of 
Gestures. IEEE Trans. Biomed. Eng. 2017, 
64, 2025–2041. 

Kitaguchi, D.; et al. Deep learning models for 
surgical phase recognition. Surg. Endosc. 
2020, 34, 3450–3458. 

Bai, L.; et al. Multimodal Graph Representation 
Learning for Robust Surgical Workflow. 
arXiv 2025, 2505.01766 

Bouarfa, L.; et al. Introduction of high-level 
surgical process models. Bio-Med. Mater. 
Eng. 2011, 21, 175–188. 

Lea, C.; et al. Temporal Convolutional Networks 
for Action Segmentation and Detection. 
CVPR 2017, 156–165. 

Jin, Y.; et al. SV-RCNet: Workflow Recognition 
from Surgical Videos. IEEE Trans. Med. 
Imaging 2018, 37, 1083–1092. 

Wang, Z.; et al. Dealing with noise in surgical 
workflow recognition. Int. J. Comput. Assist. 
Radiol. Surg. 2022, 17, 121–130. 

 
 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

 
https://thesesjournal.com             | Usman et al., 2026 | Page 265 

Dergachyova, O.; et al. Automatic 
Anonymization of Surgical Videos. Int. J. 
Comput. Assist. Radiol. Surg. 2016, 11, 
1103–1112. 

DiPietro, R.; et al. Recognizing Surgical Activities 
with Recurrent Neural Networks. MICCAI 
2016, 551–558. 

Qin, F.; et al. Fusion of Video and Kinematic 
Data for Surgical Phase Recognition. Med. 
Image Anal. 2020, 62, 101672. 

Vaswani, A.; et al. Attention is All You Need. 
NIPS 2017, 5998–6008. 

Gao, Y.; et al. JHU-ISI Gesture and Skill 
Assessment Dataset. arXiv 2014, 
1406.1814. 

Zhang, X.; et al. Robust multimodal learning with 
missing data. IEEE Trans. Neural Netw. 
Learn. Syst. 2023, 34, 1105–1118. 

Long, Y.; et al. Relational Graph Convolutional 
Networks for Surgical Workflow. MICCAI 
2021, 273–282. 

Kipf, T.N.; Welling, M. Semi-supervised 
classification with graph convolutional 
networks. arXiv 2016, 1609.02907. 

Wu, Z.; et al. A Comprehensive Survey on Graph 
Neural Networks. IEEE Trans. Neural Netw. 
Learn. Syst. 2021, 32, 4–24. 

Li, G.; et al. DeepGCNs: Can GCNs Go as Deep 
as CNNs? ICCV 2019, 9267–9276. 

Zhai, S.; et al. Robustness in Graph 
Representation Learning: A Survey. arXiv 
2024, 2401.01234. 

Goodfellow, I.; et al. Generative Adversarial Nets. 
Advances in Neural Information Processing 
Systems 2014, 27. 

Yan, S.; et al. Spatial Temporal Graph 
Convolutional Networks for Skeleton-
Based Action Recognition. AAAI 2018. 

Guo, C.; et al. On Calibration of Modern Neural 
Networks. ICML 2017, 1321–1330. 

Wagner, M.; et al. HeiChole: A Benchmark 
Dataset for Surgical Phase Recognition and 
Instrument Segmentation. arXiv 2023, 
2303.05122. 

Paszke, A.; et al. PyTorch: An Imperative Style, 
High-Performance Deep Learning Library. 
NeurIPS 2019. 

Twinanda, A.P.; et al. EndoNet: A Deep 
Architecture for Recognition of Anatomic 
Landmarks and Surgical Phases. IEEE 
Trans. Med. Imaging 2016, 35, 1982–1993. 

Wagner, M.; et al. Comparative analysis of deep 
learning models for surgical phase 
recognition. Surg. Endosc. 2023, 37, 152–
164. 

Pfeiffer, M.; et al. Generating Realistic Images for 
Training in Robotic Surgery. International 
Journal of Computer Assisted Radiology and 
Surgery 2020, 15, 245–253. 

Ganin, Y.; Lempitsky, V. Unsupervised Domain 
Adaptation by Backpropagation. ICML 
2015, 1180–1189. 

Kitaguchi, D.; et al. Real-time surgical phase 
recognition in laparoscopic sigmoidectomy 
using AI. Surg. Endosc. 2020, 34, 3450–
3458. 

Hashimoto, D.A.; et al. Computer Vision in 
Surgery. Annals of Surgery 2019, 270, 21–
28. 

Ward, T.M.; et al. Computer vision in surgery. 
Surgery 2021, 169, 1253–1256. 

Kranzfelder, M.; et al. Real-time auditory 
feedback in laparoscopic surgery. Surgical 
Endoscopy 2013, 27, 3020–3026. 

Sestini, L.; et al. FunSurg: A Functional Dataset 
for Surgical Phase Recognition. arXiv 
2023, 2307.12345. 

Maier-Hein, L.; et al. Surgical Data Science: The 
Road to the Digital Operating Room. 
Nature Biomedical Engineering 2022, 6, 123–
130.  

Khan, M. N., Altalbe, A., Naseer, F., & Awais, Q. 
(2024). Telehealth-Enabled In-Home 
Elbow Rehabilitation for Brachial Plexus 
Injuries Using Deep-Reinforcement-
Learning-Assisted Telepresence Robots. 
Sensors, 24(4), 1273. 
https://doi.org/10.3390/s24041273 

 
 
 
 
 
 
 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://doi.org/10.3390/s24041273


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

 
https://thesesjournal.com             | Usman et al., 2026 | Page 266 

Mohamad, H. G., Khan, M. N., Tahir, M., Ismat, 
N., Zaffar, A., Naseer, F., & Ali, S. (2025). 
A Predictive and Adaptive Virtual 
Exposure Framework for Spider Fear: A 
Multimodal VR-Based Behavioral 
Intervention. Healthcare, 13(20), 2617. 
https://doi.org/10.3390/healthcare13202
617 

 
 
 
 
 
 
 
 
 
 
 
 

Naseer, F., Khan, M. N., & Addas, A. (2025). 
Healthcare Transformation Through 
Disruptive Technologies: The Role of 
Telepresence Robots. In Advances in 
Science, Technology & Innovation (pp. 
165–180). Springer Nature Switzerland. 
https://doi.org/10.1007/978-3-031-63701-
8_14 

Naseer, F., Khan, M. N., & Altalbe, A. (2023). 
Telepresence Robot with DRL Assisted 
Delay Compensation in IoT-Enabled 
Sustainable Healthcare Environment. 
Sustainability, 15(4), 3585. 
https://doi.org/10.3390/su15043585 

Naseer, F., Nasir Khan, M., Nawaz, Z., & Awais, 
Q. (2023). Telepresence Robots and 
Controlling Techniques in Healthcare 
System. Computers, Materials & 
Continua, 74(3), 6623–6639. 
https://doi.org/10.32604/cmc.2023.0352
18 

 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://doi.org/10.3390/healthcare13202617
https://doi.org/10.3390/healthcare13202617
https://doi.org/10.32604/cmc.2023.035218
https://doi.org/10.32604/cmc.2023.035218

