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Abstract
Keywords: Lymphoblastic Leukemia (ALL) is the most common kind of cancer in children. It
Acute Lymphoblastic Leukemia, s cqused by too many immature lymphoblasts growing in the bone marrow.
Convolutional Neural Networks,  Aceyrage subtype identification is crucial for timely and effective treatment. This
work presents a deep learning approach for the automated classification of four
diagnostic categories based on microscopic peripheral blood smear images: benign
(hematogones) and three malignant subtypes of acute lymphoblastic leukemia

(Early Pre-B, Pre-B, and Pro-B). Transfer learning was used to improve four pre-
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1 Introduction
Acute Lymphoblastic Leukemia (ALL) is a
malignant  hematological disorder mostly

affecting children and represents a considerable
public health concern due to its potentially fatal
outcomes if not promptly identified and treated
(2, 4, 9, 14]. The disorder arises from the
uncontrolled proliferation of immature white blood
cells (lymphoblasts) in the bone marrow, obstructing
normal hematopoiesis and leading to symptoms such
as fatigue, recurrent infections, and bleeding (2, 9].
(ALL) is

classified into two primary categories: benign

Acute Lymphoblastic Leukemia
hematogones and malignant lymphoblasts. The
malignant lymphoblasts are further categorized into
Early Pre-B, Pre-B, and Pro-B subtypes. It is very
important to know exactly what subtype it is
choices and prognosis vary

since treatment

accordingly [7, 8]. The
diagnosing is to look at photographs of
peripheral blood smears (PBS) by hand. This

approach is

traditional way of

subjective, time-consuming, and

requires  specialist knowledge, and little
differences in shape make it more likely that the
[5,10]. Al et ral

an Extra Tree

diagnosis will be wrong.
iAFP-ET,
model, to find anti- fungal peptides. In the model

proposed Classifier
shown that how useful it is for mixed feature
extraction.[17].

This study used a dataset of 3,256 PBS images
sourced from 89 suspected ALL patients in Tehran,
Iran [11]. The collection contains 504 benign shots
and 2,752 malignant images, which are divided
into three groups: Early Pre-B, Pre-B, and Pro-B.
A hematological expert verified all the labels
using flow cytometry [11]. Shamas et al. (Year)
identified that a deep transfer learning model
using VGGI16

distinct  lung

could precisely detect fifteen

diseases from  chest  X-rays.
Convolutional neural network (CNN) architectures
intricate  illness

[18].HSV-

based segmentation was utilized to prepare the

are versatile for automating

categorization from medical pictures

images such that lymphoblasts could be seen well. A

major issue with the collection is that there aren’t

enough benign examples, which leads to class
imbalance. We propose that a deep learning
system that can automatically sort all subtypes
using  ImageNetpretrained = CNN
including EfficientNet-B3, VGG16, DenseNet-121,
and ResNet-50. EfficientNet-B3 achieved the
highest accuracy (98.57%), followed by VGG16
(98.37%), DenseNet-121 (97.76%), and ResNet-50

(95.92%). Images were resized, normalized, and

models

augmented, while class  weighting  and

regularization were applied to im- prove
generalization and reduce bias toward majority
reported
70-95%

accuracy [10, 12, 15], the proposed system delivers

classes. Compared with previously

methods, which typically achieve

superior performance without reliance on

computationally expensive ensemble models,
supporting its suitability for clinical use.

Early and accurate detection of Acute
Lymphoblastic Leukemia (ALL) from peripheral
blood smear (PBS) images has increasingly benefited
from deep learning-based automated analysis
systems.  Convolutional neural networks (CNNis)
and transfer learning approaches have demonstrated
strong potential for both binary leukemia detection
and multiclass subtype classification.

Pathan et al. [1] CNN-based

framework using a finetuned VGG16 model on

developed a

3,256 smear images for three ALL subtypes and
benign cells, achieving 85% accuracy.

Despite promising results, the small dataset
limited generalizability. Haque et al. [2] further
enhanced detection performance by integrating

Their

technique

preprocessing with transfer learning.

Modified High-Boosting
combined with Inception-ResNet delivered F1-

filtering

scores above 95% on both binary and multiclass

datasets, though external validation was

recommended due to dataset bias.

Several studies have applied ensemble and
attention-based architectures. Bhute et al. [3]
trained VGG16, ResNet50, and InceptionV3

models on the Raabin Leukemia dataset and
reported up to 99.8% accuracy using an ensemble

approach, albeit with high computational cost.
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Ullah et al. [4] incorporated Efficient Channel
Attention into VGG16 on the CNMC dataset,
to 91.1% and
benefit of adaptive

improving detection accuracy

demonstrating the feature
weighting. There have also been concepts for
personalized CNN designs. Sampathila et al. released
their description of the ALL-NET model at the
reference number 5. The fact that it was trained on
a better version of the CNMC dataset and had
classification accuracies close to 95% shows that
lightweight convolutional neural networks (CNNs)
may be deployed in clinical settings. Also, Mondal et
al. [6] showed how ensemble learning may make
systems more stable. They employed a weighted
ensemble of five transfer-learning models and got an
Fl-score of 89.72% and an area under the curve
(AUC) of 94.8%.
Other methods

hybrid deep learning pipelines, and analysis that is

include subjectwise validation,

made better by segmentation. All of these are
instances of methodology. Rezayi et al. performed
tests that demonstrated the evaluation of
lightweight CNNs, namely ResNet50 and VGG16,
utilizing a competitive dataset. After using pre-
trained weights, the results indicated . an
in generalization, achieving an

Syed et al. [8] developed

hierarchical classifiers to tell the difference between

improvement

accuracy of 84.6%.

acute and chronic leukemia kinds, and they got
an Flscore of 0.94. This was done even though
it was still hard to categorize subtypes in detail
because of their comparable shapes. Deep learning
shown

and improved feature extraction have

promise in recent research for use in biological
categorization. Models such as AIPs-SnTCN. [20]
and Deep-AntiFP  [21] wuse

networks and feature fusion to provide peptide

specialized neural

and protein predictions with a high degree of

accuracy.  The importance of combining
evolutionary and physicochemical variables for
strong classification is further shown by an SVM-
based predictor [22] and the iAFPsEnC-GA

ensemble [23]. The  creation of

comprehensive frameworks for hematological image

more

analysis has also improved the process of

automatically identifying leukemia. Zhou et al
[9] achieved an of 89% in
identifying ALL by the analysis of bone marrow

accuracy rate

smear pictures obtained from youngsters. A
multistage CNN pipeline was used to do this.
Almadhor et al. [10] achieved a 90% SVM-based
CNMC dataset by the

of deep feature

accuracy on the
integration extraction with
traditional machine-earning classifiers. This was
done by combining the two ways. Ghulam et al. et
al. [19] used a 2D Convolutional Neural Network
(ACP-2DCNN), showing how CNN architectures
may comprehend complicated, high- dimensional
biological patterns useful for medical research.
Park et al. [12] say that using EfficientNet-based
white blood cell subtype categorization led to an
accuracy rate of 88.6% when telling the difference
between AML and ALL. This was a thorough look
at all twelve different kinds of cells involved. The
study’s results show that CNN-based systems can
reliably diagnose leukemia provided they have
enough data, augmentation, and ensemble or
attention-based methods. Nonetheless, significant
challenges persist, including dataset imbalance,
morphological similarity across classes, insufficient
external validation, and suboptimal performance in
multiclass scenarios. These constraints underscore
the need for

Ongoing study into the advancement of novel
designs and training approaches to accurately classify
all subtypes inside healthcare organizations.

The main contributions of this research include:
> optimized preprocessing and HSV-based
enhancement to improve cell visibility;

> handling of dataset imbalance through
augmentation and weighted learning;

> evaluation of multiple deep learning
architectures for ALL subtype classification; and
> Comprehensive comparison with existing
approaches to demonstrate clinical relevance.

The remainder of this paper is organized as follows:
Section 2 describes the dataset and methodology;
Section 3 presents the results; Section 4 concludes

the study; and lists the references.
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2
2.1
The research used a publicly accessible dataset of

Material and Methods
Dataset

3,256 pictures of peripheral blood smears (PBS)

which made sure that the diagnosis was quite
reliable.

The dataset comprises four diagnostic categories:

Benign (hematogones)

from 89 people. After standard hematological Early PreB  Acute Lymphoblastic
staining, all samples were preserved in JPG format Leukemia (ALL)
and obtained at a magnification of 100x the PreB  Acute Lymphoblastic Leukemia
microscope. Hematopathology experts looked over (ALL)
and validated all of the photos using flow cytometry,
ProB Acute Lymphoblastic Leukemia
(ALL)
2.2 Dataset Composition images, with benign samples representing the
Table 1 summarizes the distribution of the four minority class.
diagnostic classes. The dataset contains 3,256
Table 1: Dataset Composition
Class Images Percentage
Benign 504 15.5%
Early Pre-B 985 30.2%
Pre-B 963 29.6%
Pro-B 804 24.71%
Total 3256 100%

Stratified sampling was utilized to divide the data

into three groups: training, valida- tion, and testing.
The proportions of each class stayed the same. The

table shows what happened after the division. 2.

Table 2: Dataser Split

Subset Total Images Benign Early Pre-B Pre-B Pro-B
Training (70%) 2276 352 689 673 562
Validation (15%) 490 76 148 145 121
Test (15%) 490 76 148 145 121
Total 3256 504 985 963 804
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Figure 1: Class-Wise Examples of Peripheral Blood Smear Images for ALL Subtype

Classification

2.3
All images were resized to 224 x 224 pixels and pixel

Image Pre-Processing

intensities were normalized to the range [0,1] using a
1/255 scaling factor.

samples had the same feature representation, this

By making sure that all

standardization made sure that it would operate with
diverse convolutional neural network (CNN) designs
and kept the training process steady. Because of this,
preprocessing made the model more accurate and

made sure that the leukemia groups were accurately

2.4

Data augmentation was applied exclusively to the

Data Augmentation

training set to improve model gener- alization and
mitigate class imbalance. The validation and test
sets were subjected only to rescaling in order to
preserve their original distributions. Augmentation
operations included geometric and photometric
transformations such as rotation, translation, shear,
flipping,
summarizes the

vertical and

Table 3

zoom, horizontal and

brightness adjustment.

grouped. augmentation parameters used for each model.

Table 3: Data Augmentation Parameters for Different Models

Model Rotation Shift Shear Zoom  Flips Brightness Fill Mode
(W/H) Range

VGG16 <40 <40% <40% <40% H/V 0.5-1.5 Nearest

EfficientNet-B3 <8 <8% <8% <8% H/V 0.95-1.05 Nearest

DenseNet-121 <8 <8% <8% <8% H/V 0.95-1.05 Nearest

ResNet-50 <8 <8% <8% <8% H/V 0.95-1.05 Nearest

2.5 Feature Extraction
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Four pretrained convolutional neural network

(CNN) VGGI16,
DenseNet-121, and ResNet-50—were employed as

architectures—EfficientNet-B3,

feature extractors to learn discrimina- tive
representations from peripheral blood smear
images. All networks were initialized with

ImageNet pretrained weights to leverage transfer
learning and improve convergence

on the limited medical dataset.

Input images were resized to 224 x 224 x 3 and
propagated through the convolutional layers of each
high-level

representing morphological

model to generate feature maps

char- acteristics of
leukemic and benign lymphoid cells. EfficientNet-
B3 produced feature maps of size 7x7x1536,
VGG16 generated 7x7x512 maps, DenseNet-121
yielded 7x7x1024,
and ResNet-50 2048

extracted 7 x 7 x

These feature maps were subsequently flattened and
passed to task-specific classifica- tion heads to
perform multiclass ALL subtype prediction.

"All parameters fine-tuned in Phase 2

2.6 Optimizers and Hyper parameters
The models were trained using either the Adam
optimizer or stochastic gradient descent (SGD),
with learning rates selected separately for the two
training phases, as summarized in Table 5. Adam
was employed for EfficientNet-B3 and VGGI16,
while SGD with a momentum factor of 0.9 was
DenseNet-121 and  ResNet-50.

Dropout regularization in the range of 0.60 to

applied to

0.70 was incorporated intothe classification heads
to mitigate overfitting, and additional fine-tuning
dropout was applied to EfficientNet-B3. The
sample size of 32 was kept the same for all
experiments. We used a Tesla T4 GPU on Google

Colab for all of our training. This made it easy to

representations.

quickly analyze massive amounts of images and

improve our models.
Table 4: Model Architectures and Training Parameters
Model Total Parameters  Trainable (Phase Trainable (Phase Epochs/

1) 2) Phase

EfficientNet-B3 12,365,619 1,581,056 12,365,619 15 + 15
VGG16 15,248,196 533,508 15,248,196’ 15 + 15
DenseNet-121 8,095,300 1,056,768 3,033,988 20 + 20
ResNet-50 25,694,084 2,105,344 24,302,596 20 + 20
Table 5: Training Configuration and Hyperparameters
Model Optimizer LR (P1) LR (P2) Momentum Dropout
EfficientNet-B3 Adam 1x10™ 1 %107 - 0.60
VGG16 Adam 5x10% 5x107° - 0.70
DenseNet-121 SGD 3x10™ 3x107 0.9 0.60
ResNet-50 SGD 3x10™ 3x107 0.9 0.60
3 Results and Discussion network models: EfficientNet-B3, VGG16,

We utilized 490 photos of peripheral blood

smears to evaluate four convolutional neural

DenseNet-121, and ResNet-50. We then put the
photographs into four groups: (benign, early pre-
B, pre-B, and pro-B).
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Figure 2: Training accuracy and loss curves for the four CNN architectures: DenseNet- 121 (a-b),
EfficientNet-B3 (c-d), ResNet-50 (e-f), and VGG16 (g-h).
Table 6: Test Accuracy And Per-Class Precision, Recall, And fl-Score

Model Accuracy (%) Class Precision  Recall F1-score

EfficientNet-B3 98.57 Benign 0.99 1.00 0.99
VGG16 98.37 Early Pre-B 0.99 0.99 0.99
DenseNet-121 97.76 Pre-B 0.99 0.98 0.98

Pro-B 0.98 0.98 0.98
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Benign 0.99 0.93 0.96
Early Pre-B 0.96 1.00 0.98
Pre-B 1.00 0.98 0.99
Pro-B 0.99 1.00 1.00
Benign 0.95 0.96 0.95
Pre-B 1.00 0.95 0.98
3.1 Training and Validation Curves training accuracy reaches 1.0. The ongoing

Figure 2 For each of the four models, show the

accuracy and loss curves for training and

validation.  EfficientNet-B3 quickly reaches a
level of accuracy that is good for training; it gets
close to 1.0 quickly and stays above 0.98 by epoch
15. The loss curves go down consistently with
minimal variation, which means that the model is
good at generalizing and doesn’t overfit, which is
consistent with its best test accuracy of 98.57
VGG16’s training accuracy quickly rises to 1.0,
while its validation accuracy steadily rises to
roughly 0.98. Validation accuracy drops a little
between epochs 12 and 15, maybe because of
active augmentation and high dropout rates. Still,
the model gets close to ultimate alignment and
does well on tests (98.37+. At first, DenseNet-121

gets  virtually  perfect  training  accuracy.

Validation accuracy and loss, on the other hand,
change a lot, especially between epochs 10 and 15.
This instability shows that there is

some

overfitting, which lowers the test accuracy to 97.76.

ResNet-50’s validation accuracy and loss go from

0.85 to 0.98 during 40 epochs, even while its

Confusion Matrix for DenseNet-121
140

Benign
|

120

100

Early

- 80

True

- 60

- 40

Pro

. ' i
Benign Early Pre Pro
Predicted

(a) DenseNet-121

divergence shows that convergence is not working
well and implies overfitting, which is in line with
the model’s lowest test accuracy of 95.72 In short,

EfficientNet-B3 and VGG16 have
stable training dynamics and the best ability to

the most

generalize. On the other hand, DenseNet-121 and
ResNet-50 are not as stable.

3.2 Confusion Matrices

Figure 3a-3d present the confusion matrices for
the four models on the test set.

EfficientNet-B3 shows the strongest performance
with only seven misclassifications total (one to two
per class) and perfect or near-perfect diagonal
counts (Benign: 72, Early Pre-B: 142, Pre-B: 141,
Pro-B: 117). The minor errors are distributed
without clear patterns of systematic confusion
between specific subtypes.

VGG16 performs nearly as well, with nine total
errors—primarily minor confusions involving the
Benign (five misclassified) and malignant classes,
but zero errors in several cells, indicating robust

separation of Early Pre-B, Pre-B, and Pro-B.

Confusion Matrix for EfficientNet-B3

Benign
,
~
i

True
Early

Pre
-

Pro
(=]

i l '
Benign Early Pre Pro
Predicted

(b) EfficientNet-B3
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(c) ResNet-50
Figure 3: Confusion matrices for the four CNN
models on the test set (490 images): (a) DenseNet-
121, (b) EfficientNet-B3, (c) ResNet-50, and (d)
VGG16. EfficientNet-B3 and VGG16 show near-

perfect diagonal dominance with minimal

misclassifications
DenseNet-121 and ResNet-50 display more
scattered errors (approximately 15-20

misclassifications each). Both struggle most with

the Benign class (five to seven misclassifications)

Confusion Matrix for VGG16

140

120

100

o

. ' i
Benign Early Pre Pro
Predicted

(d) VGG16
and show occasional confusion between
malignant  subtypes  (e.g.,  Early = Pre-B

misclassified as Pre-B or Pro-B). These patterns
align with their lower overall accuracies (97.76%
and 95.92%, respectively).

The near-diagonal dominance across all matrices,
and VGG16,
subtle

particularly for EfficientNet-B3

confirms effective discrimination of
morphological differences among ALL subtypes

and benign hematogones.
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3.3 Bar Graphs
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Figure 4: Perclass performance ' metrics
(precision, recall, Fl-score) for the four CNN
models: (a) DenseNet-121, (b) EfficientNet-B3,
(c) ResNet-50, and (d) VGG16. All models
show strong performance (>0.90) across Benign,
Early Pre-B, Pre-B, and Pro-B classes.

Figure 4a-4d illustrate per-class precision, recall,

All models

exhibit strong and balanced performance across

and Fl-score for the four models.

the four classes (Benign, Early Pre-B, Pre-B,
Pro-B).

Precision, recall, and Fl-score values consistently
exceed 0.90, with most above 0.95. EfficientNet-
B3 achieves the highest and most consistent
metrics, with precision, recall, and Fl-score at or
above 0.98 for all classes, confirming its superior

VGG16 follows

closely, showing near-identical high values except

overall accuracy of 98.57%.

for slightly lower recall on the Benign class (0.93),

reflecting minor misclassifications observed in its

Benign Early pre Fro
F1-Scare for VGG16

10

08

06

04

02

(d) {E/GG16

confusion matrix. DenseNet-121 and ResNet-50
display marginally lower scores, particularly on
the Benign class (precision and Fl-score 0.90-
0.95 for ResNet-50), consistent with their higher
error rates in distinguishing benign hematogones.
The uniformly high per-class metrics demonstrate
robust discrimination of subtle morphological
differences among ALL subtypes and benign cells
across all architectures.

3.4 Discussion

The proposed EfficientNet-B3 model achieves the
highest accuracy of 98.57%, surpassing all prior
studies. The proposed VGG16 follows closely at
98.37%, and DenseNet-121 at 97.76%, placing
three of the top four results among the proposed
approaches. Even the proposed ResNet-50
(95.92%) remains competitive with mid-to-high-
tier prior works.

The closest prior result is 98.00% reported by

Bhute et al. using VGG16, followed by 96.07%
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(Haque et al., Incept-ResNet) and 95.45%
(Sampathila et al., ALL-NET). Other studies
range from 70.01% to 92.0%, demonstrating
greater variability in performance.

These results establish EfficientNet-B3 as the new
state-of-the-art for this fourclass ALL subtype
classification task, with the proposed transfer

learning framework consistently yielding superior

or highly competitive performance across
architectures.

Figure 5b and 5a compares the classification
accuracies of the proposed models with
previously published results on comparable acute
lymphoblastic leukemia (ALL) blood smear image

datasets.
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Figure 5: Model accuracy comparisons: (a) line

chart  showing training  progression;  (b)
comparison with prior studies on ALL blood
smear datasets.

4 Conclusion

This

learning-based

study presented an automated deep

framework for accurate
classification of Acute Lymphoblastic Leukemia
(ALL) subtypes using peripheral blood smear
images. This method worked extremely well in
four clinically important groups: Benign, Early
Pre-B, Pre-B, and Pro-B. It did this by using four
convolutional network
EfficientNet-B3, VGGI6,
DenseNet-121, and ResNet-50. The models that
were examined had the best overall performance.

EfficientNet-B3 had a test accuracy of 98.57%,

which means it was virtually perfect in terms of

sophisticated neural

architectures:

precision, recall, and Fl-scores for all classes.

This shows that it is strong and effective in

telling ~ the difference between fine-grained
leukemia subtypes. The suggested method works
extremely well because it uses a well planned
preparation and training plan that includes image

standardization, normalization, enhancement

HSV-based

augmentation, and class-weighted learning to fix

using lymphoblasts, data
the imbalance in the dataset. The models used a
two-stage transfer learning methodology, first

using generic visual representations from
ImageNet, followed by the customization of these
features to align with the wunique structural
patterns blood
Comparative studies showed that VGG16 and

DenseNet-121 did well, even if deeper designs like

seen  in smear  pictures.

ResNet-50 were more badly impacted by class
imbalance, especially when it came to sorting

The

surpasses several previously reported methods by

minority classes. suggested technique

attaining equivalent or superior accuracy without
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the need of cumbersome group procedures. The
successful integration of the top-performing model

into a

acute  lymphoblastic leukemia from

microscopic images. Informatics in Medicine

Unlocked, 27, 100794.

web-based interface demonstrates the practical [71 Rezayi, S., et al. (2021). Timely diagnosis

applicability of our work. With this connection, of acute lymphoblastic leukemia using

it’s easy to make quick, accurate, and user-friendly artificial intelligence-oriented deep learning
predictions for all subtypes. The results suggest methods.  Computational  Intelligence  and

that automated deep learning analysis of Neuroscience, 2021, 5478157.

peripheral blood smear images might assist [8] Syed, N., et al. (2025). Novel hierarchical

physicians and laboratory personnel in making deep learning models predict type of

better informed decisions, decreasing diagnostic leukemia from  wholeslide microscopic
variability, ~and  enabling  precise  clinical images of peripheral blood. Journal of Medical

assessments promptly. Artificial Intelligence, 8(5), 1-14.
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