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Abstract
Lymphoblastic Leukemia (ALL) is the most common kind of cancer in children. It
is caused by too many immature lymphoblasts growing in the bone marrow.
Accurate subtype identification is crucial for timely and effective treatment. This
work presents a deep learning approach for the automated classification of four
diagnostic categories based on microscopic peripheral blood smear images: benign
(hematogones) and three malignant subtypes of acute lymphoblastic leukemia
(Early Pre-B, Pre-B, and Pro-B). Transfer learning was used to improve four pre-
trained convolutional neural network architectures EfficientNet-B3, VGG16,
DenseNet-121, and ResNet-50—on a dataset of 3,256 images. EfficientNet-B3
achieved the highest test accuracy of 98.57%, followed by VGG16 (98.37%),
DenseNet-121 (97.76%), and ResNet-50 (95.92%). The proposed strategy
demonstrates enhanced diagnostic precision and has considerable potential to
reduce observer variability, minimize diagnostic errors, and expedite clinical
decision-making in all screening and subtype identification processes
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1 Introduction
Acute Lymphoblastic Leukemia (ALL) is a

malignant hematological disorder mostly

affecting children and represents a considerable

public health concern due to its potentially fatal

outcomes if not promptly identified and treated

[2, 4, 9, 14]. The disorder arises from the

uncontrolled proliferation of immature white blood

cells (lymphoblasts) in the bone marrow, obstructing

normal hematopoiesis and leading to symptoms such

as fatigue, recurrent infections, and bleeding [2, 9].

Acute Lymphoblastic Leukemia (ALL) is

classified into two primary categories: benign

hematogones and malignant lymphoblasts. The

malignant lymphoblasts are further categorized into

Early Pre-B, Pre-B, and Pro-B subtypes. It is very
important to know exactly what subtype it is

since treatment choices and prognosis vary

accordingly [7, 8]. The traditional way of

diagnosing is to look at photographs of

peripheral blood smears (PBS) by hand. This

approach is subjective, time-consuming, and
requires specialist knowledge, and little

differences in shape make it more likely that the

diagnosis will be wrong. [5,10]. Ali et al.

proposed iAFP-ET, an Extra Tree Classifier

model, to find anti- fungal peptides. In the model

shown that how useful it is for mixed feature

extraction.[17].
This study used a dataset of 3,256 PBS images

sourced from 89 suspected ALL patients in Tehran,

Iran [11]. The collection contains 504 benign shots

and 2,752 malignant images, which are divided

into three groups: Early Pre-B, Pre-B, and Pro-B.

A hematological expert verified all the labels

using flow cytometry [11]. Shamas et al. (Year)

identified that a deep transfer learning model

using VGG16 could precisely detect fifteen

distinct lung diseases from chest X-rays.

Convolutional neural network (CNN) architectures

are versatile for automating intricate illness

categorization from medical pictures [18].HSV-

based segmentation was utilized to prepare the

images such that lymphoblasts could be seen well. A

major issue with the collection is that there aren’t

enough benign examples, which leads to class

imbalance. We propose that a deep learning

system that can automatically sort all subtypes

using ImageNet-pretrained CNN models

including EfficientNet-B3, VGG16, DenseNet-121,

and ResNet-50. EfficientNet-B3 achieved the

highest accuracy (98.57%), followed by VGG16

(98.37%), DenseNet-121 (97.76%), and ResNet-50

(95.92%). Images were resized, normalized, and

augmented, while class weighting and

regularization were applied to im- prove

generalization and reduce bias toward majority

classes. Compared with previously reported

methods, which typically achieve 70–95%

accuracy [10, 12, 15], the proposed system delivers

superior performance without reliance on

computationally expensive ensemble models,

supporting its suitability for clinical use.

Early and accurate detection of Acute

Lymphoblastic Leukemia (ALL) from peripheral

blood smear (PBS) images has increasingly benefited
from deep learning–based automated analysis

systems. Convolutional neural networks (CNNs)

and transfer learning approaches have demonstrated

strong potential for both binary leukemia detection

and multiclass subtype classification.

Pathan et al. [1] developed a CNN-based
framework using a fine-tuned VGG16 model on

3,256 smear images for three ALL subtypes and

benign cells, achieving 85% accuracy.

Despite promising results, the small dataset

limited generalizability. Haque et al. [2] further

enhanced detection performance by integrating

preprocessing with transfer learning. Their

Modified High-Boosting filtering technique

combined with Inception–ResNet delivered F1-

scores above 95% on both binary and multiclass

datasets, though external validation was

recommended due to dataset bias.

Several studies have applied ensemble and

attention-based architectures. Bhute et al. [3]

trained VGG16, ResNet50, and InceptionV3

models on the Raabin Leukemia dataset and

reported up to 99.8% accuracy using an ensemble

approach, albeit with high computational cost.
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Ullah et al. [4] incorporated Efficient Channel

Attention into VGG16 on the C-NMC dataset,

improving detection accuracy to 91.1% and

demonstrating the benefit of adaptive feature

weighting. There have also been concepts for

personalized CNN designs. Sampathila et al. released

their description of the ALL-NET model at the

reference number 5. The fact that it was trained on

a better version of the C-NMC dataset and had

classification accuracies close to 95% shows that

lightweight convolutional neural networks (CNNs)

may be deployed in clinical settings. Also, Mondal et

al. [6] showed how ensemble learning may make

systems more stable. They employed a weighted

ensemble of five transfer-learning models and got an

F1-score of 89.72% and an area under the curve

(AUC) of 94.8%.

Other methods include subject-wise validation,

hybrid deep learning pipelines, and analysis that is

made better by segmentation. All of these are

instances of methodology. Rezayi et al. performed
tests that demonstrated the evaluation of

lightweight CNNs, namely ResNet50 and VGG16,

utilizing a competitive dataset. After using pre-

trained weights, the results indicated an

improvement in generalization, achieving an

accuracy of 84.6%. Syed et al. [8] developed
hierarchical classifiers to tell the difference between

acute and chronic leukemia kinds, and they got

an F1-score of 0.94. This was done even though

it was still hard to categorize subtypes in detail

because of their comparable shapes. Deep learning

and improved feature extraction have shown

promise in recent research for use in biological

categorization. Models such as AIPs-SnTCN. [20]

and Deep-AntiFP [21] use specialized neural

networks and feature fusion to provide peptide

and protein predictions with a high degree of

accuracy. The importance of combining

evolutionary and physicochemical variables for

strong classification is further shown by an SVM-

based predictor [22] and the iAFPs-EnC-GA

ensemble [23]. The creation of more

comprehensive frameworks for hematological image

analysis has also improved the process of

automatically identifying leukemia. Zhou et al.

[9] achieved an accuracy rate of 89% in

identifying ALL by the analysis of bone marrow

smear pictures obtained from youngsters. A

multi-stage CNN pipeline was used to do this.

Almadhor et al. [10] achieved a 90% SVM-based

accuracy on the C-NMC dataset by the

integration of deep feature extraction with

traditional machine-learning classifiers. This was

done by combining the two ways. Ghulam et al. et

al. [19] used a 2D Convolutional Neural Network

(ACP-2DCNN), showing how CNN architectures

may comprehend complicated, high- dimensional

biological patterns useful for medical research.

Park et al. [12] say that using EfficientNet-based

white blood cell subtype categorization led to an

accuracy rate of 88.6% when telling the difference

between AML and ALL. This was a thorough look

at all twelve different kinds of cells involved. The

study’s results show that CNN-based systems can

reliably diagnose leukemia provided they have
enough data, augmentation, and ensemble or

attention-based methods. Nonetheless, significant

challenges persist, including dataset imbalance,

morphological similarity across classes, insufficient

external validation, and suboptimal performance in

multiclass scenarios. These constraints underscore
the need for

Ongoing study into the advancement of novel

designs and training approaches to accurately classify

all subtypes inside healthcare organizations.

The main contributions of this research include:

 optimized preprocessing and HSV-based

enhancement to improve cell visibility;

 handling of dataset imbalance through

augmentation and weighted learning;

 evaluation of multiple deep learning

architectures for ALL subtype classification; and

 Comprehensive comparison with existing
approaches to demonstrate clinical relevance.

The remainder of this paper is organized as follows:

Section 2 describes the dataset and methodology;

Section 3 presents the results; Section 4 concludes

the study; and lists the references.
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2 Material and Methods

2.1 Dataset
The research used a publicly accessible dataset of

3,256 pictures of peripheral blood smears (PBS)

from 89 people. After standard hematological

staining, all samples were preserved in JPG format

and obtained at a magnification of 100× the

microscope. Hematopathology experts looked over

and validated all of the photos using flow cytometry,

which made sure that the diagnosis was quite

reliable.

The dataset comprises four diagnostic categories:

• Benign (hematogones)

• Early Pre-B Acute Lymphoblastic

Leukemia (ALL)

• Pre-B Acute Lymphoblastic Leukemia

(ALL)

• Pro-B Acute Lymphoblastic Leukemia

(ALL)
2.2 Dataset Composition
Table 1 summarizes the distribution of the four

diagnostic classes. The dataset contains 3,256

images, with benign samples representing the

minority class.

Table 1: Dataset Composition
Class Images Percentage

Benign 504 15.5%

Early Pre-B 985 30.2%

Pre-B 963 29.6%

Pro-B 804 24.7%

Total 3256 100%

Stratified sampling was utilized to divide the data

into three groups: training, valida- tion, and testing.
The proportions of each class stayed the same. The

table shows what happened after the division. 2.
Table 2: Dataset Split
Subset Total Images Benign Early Pre-B Pre-B Pro-B

Training (70%) 2276 352 689 673 562

Validation (15%) 490 76 148 145 121

Test (15%) 490 76 148 145 121

Total 3256 504 985 963 804

https://portal.issn.org/resource/ISSN/3006-7030
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Figure 1: Class-Wise Examples of Peripheral Blood Smear Images for ALL Subtype
Classification

2.3 Image Pre-Processing

All images were resized to 224 × 224 pixels and pixel
intensities were normalized to the range [0,1] using a

1/255 scaling factor. By making sure that all

samples had the same feature representation, this

standardization made sure that it would operate with

diverse convolutional neural network (CNN) designs

and kept the training process steady. Because of this,

preprocessing made the model more accurate and
made sure that the leukemia groups were accurately

grouped.

2.4 Data Augmentation

Data augmentation was applied exclusively to the
training set to improve model gener- alization and

mitigate class imbalance. The validation and test

sets were subjected only to rescaling in order to

preserve their original distributions. Augmentation

operations included geometric and photometric

transformations such as rotation, translation, shear,

zoom, horizontal and vertical flipping, and
brightness adjustment. Table 3 summarizes the

augmentation parameters used for each model.
Table 3: Data Augmentation Parameters for Different Models

Model Rotation Shift
(W/H)

Shear Zoom Flips Brightness
Range

Fill Mode

VGG16 ≤40◦ ≤40% ≤40% ≤40% H/V 0.5–1.5 Nearest

EfficientNet-B3 ≤ 8◦ ≤8% ≤8% ≤8% H/V 0.95–1.05 Nearest

DenseNet-121 ≤ 8◦ ≤8% ≤8% ≤8% H/V 0.95–1.05 Nearest

ResNet-50 ≤ 8◦ ≤8% ≤8% ≤8% H/V 0.95–1.05 Nearest

2.5 Feature Extraction

https://portal.issn.org/resource/ISSN/3006-7030
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Four pretrained convolutional neural network

(CNN) architectures—EfficientNet-B3, VGG16,

DenseNet-121, and ResNet-50—were employed as

feature extractors to learn discrimina- tive

representations from peripheral blood smear

images. All networks were initialized with

ImageNet pretrained weights to leverage transfer

learning and improve convergence

on the limited medical dataset.

Input images were resized to 224 × 224 × 3 and

propagated through the convolutional layers of each

model to generate high-level feature maps

representing morphological char- acteristics of

leukemic and benign lymphoid cells. EfficientNet-

B3 produced feature maps of size 7×7×1536,

VGG16 generated 7×7×512 maps, DenseNet-121

yielded 7×7×1024,

and ResNet-50 extracted 7 × 7 × 2048

representations.

These feature maps were subsequently flattened and

passed to task-specific classifica- tion heads to

perform multiclass ALL subtype prediction.
*All parameters fine-tuned in Phase 2

2.6 Optimizers and Hyper parameters
The models were trained using either the Adam

optimizer or stochastic gradient descent (SGD),

with learning rates selected separately for the two

training phases, as summarized in Table 5. Adam

was employed for EfficientNet-B3 and VGG16,

while SGD with a momentum factor of 0.9 was

applied to DenseNet-121 and ResNet-50.

Dropout regularization in the range of 0.60 to

0.70 was incorporated intothe classification heads

to mitigate overfitting, and additional fine-tuning

dropout was applied to EfficientNet-B3. The
sample size of 32 was kept the same for all

experiments. We used a Tesla T4 GPU on Google

Colab for all of our training. This made it easy to

quickly analyze massive amounts of images and

improve our models.
Table 4: Model Architectures and Training Parameters

Model Total Parameters Trainable (Phase
1)

Trainable (Phase
2)

Epochs/
Phase

EfficientNet-B3 12,365,619 1,581,056 12,365,619* 15 + 15

VGG16 15,248,196 533,508 15,248,196* 15 + 15

DenseNet-121 8,095,300 1,056,768 3,033,988 20 + 20

ResNet-50 25,694,084 2,105,344 24,302,596 20 + 20

Table 5: Training Configuration and Hyperparameters

Model Optimizer LR (P1) LR (P2) Momentum Dropout

EfficientNet-B3 Adam 1 ×10−4 1 ×10−5 – 0.60

VGG16 Adam 5 ×10−6 5 ×10−6 – 0.70

DenseNet-121 SGD 3 ×10−4 3 ×10−4 0.9 0.60

ResNet-50 SGD 3 ×10−4 3 ×10−4 0.9 0.60

3 Results and Discussion
We utilized 490 photos of peripheral blood

smears to evaluate four convolutional neural

network models: EfficientNet-B3, VGG16,

DenseNet-121, and ResNet-50. We then put the

photographs into four groups: (benign, early pre-

B, pre-B, and pro-B).

https://portal.issn.org/resource/ISSN/3006-7030
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(a) DenseNet-121 Accuracy (b) DenseNet-121 Loss

(c) EfficientNet-B3 Accuracy (d) EfficientNet-B3 Loss

(e) ResNet-50 Accuracy (f) ResNet-50 Loss

(g) VGG16 Accuracy (h) VGG16 Loss

Figure 2: Training accuracy and loss curves for the four CNN architectures: DenseNet- 121 (a-b),
EfficientNet-B3 (c-d), ResNet-50 (e-f), and VGG16 (g-h).

Table 6: Test Accuracy And Per-Class Precision, Recall, And f1-Score

Model Accuracy (%) Class Precision Recall F1-score

EfficientNet-B3 98.57 Benign 0.99 1.00 0.99

VGG16 98.37 Early Pre-B 0.99 0.99 0.99

DenseNet-121 97.76 Pre-B 0.99 0.98 0.98

Pro-B 0.98 0.98 0.98

https://portal.issn.org/resource/ISSN/3006-7030
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Benign 0.99 0.93 0.96

Early Pre-B 0.96 1.00 0.98

Pre-B 1.00 0.98 0.99

Pro-B 0.99 1.00 1.00

Benign 0.95 0.96 0.95

Pre-B 1.00 0.95 0.98

3.1 Training and Validation Curves
Figure 2 For each of the four models, show the

accuracy and loss curves for training and

validation. EfficientNet-B3 quickly reaches a

level of accuracy that is good for training; it gets

close to 1.0 quickly and stays above 0.98 by epoch

15. The loss curves go down consistently with

minimal variation, which means that the model is

good at generalizing and doesn’t overfit, which is

consistent with its best test accuracy of 98.57

VGG16’s training accuracy quickly rises to 1.0,

while its validation accuracy steadily r i s e s to

roughly 0.98. Validation accuracy drops a little

between epochs 12 and 15, maybe because of

active augmentation and high dropout rates. Still,

the model gets close to ultimate alignment and
does well on tests (98.37±. At first, DenseNet-121

gets virtually perfect training accuracy.

Validation accuracy and loss, on the other hand,

change a lot, especially between epochs 10 and 15.

This instability shows that there is some

overfitting, which lowers the test accuracy to 97.76.
ResNet-50’s validation accuracy and loss go from

0.85 to 0.98 during 40 epochs, even while its

training accuracy reaches 1.0. The ongoing

divergence shows that convergence is not working

well and implies overfitting, which is in line with

the model’s lowest test accuracy of 95.72 In short,

EfficientNet-B3 and VGG16 have the most

stable training dynamics and the best ability to

generalize. On the other hand, DenseNet-121 and

ResNet-50 are not as stable.

3.2 Confusion Matrices
Figure 3a–3d present the confusion matrices for

the four models on the test set.

EfficientNet-B3 shows the strongest performance

with only seven misclassifications total (one to two

per class) and perfect or near-perfect diagonal

counts (Benign: 72, Early Pre-B: 142, Pre-B: 141,

Pro-B: 117). The minor errors are distributed
without clear patterns of systematic confusion

between specific subtypes.

VGG16 performs nearly as well, with nine total

errors—primarily minor confusions involving the

Benign (five misclassified) and malignant classes,

but zero errors in several cells, indicating robust
separation of Early Pre-B, Pre-B, and Pro-B.

(a) DenseNet-121 (b) EfficientNet-B3
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(c) ResNet-50 (d) VGG16

Figure 3: Confusion matrices for the four CNN

models on the test set (490 images): (a) DenseNet-

121, (b) EfficientNet-B3, (c) ResNet-50, and (d)

VGG16. EfficientNet-B3 and VGG16 show near-

perfect diagonal dominance with minimal

misclassifications

DenseNet-121 and ResNet-50 display more

scattered errors (approximately 15–20

misclassifications each). Both struggle most with

the Benign class (five to seven misclassifications)

and show occasional confusion between

malignant subtypes (e.g., Early Pre-B

misclassified as Pre-B or Pro-B). These patterns

align with their lower overall accuracies (97.76%

and 95.92%, respectively).

The near-diagonal dominance across all matrices,

particularly for EfficientNet-B3 and VGG16,

confirms effective discrimination of subtle

morphological differences among ALL subtypes

and benign hematogones.

https://portal.issn.org/resource/ISSN/3006-7030
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3.3 Bar Graphs

(a) DenseNet-121 (b) EfficientNet-B3

(c) ResNet-50 (d) VGG16

Figure 4: Per-class performance metrics

(precision, recall, F1-score) for the four CNN

models: (a) DenseNet-121, (b) EfficientNet-B3,

(c) ResNet-50, and (d) VGG16. All models

show strong performance (≥0.90) across Benign,

Early Pre-B, Pre-B, and Pro-B classes.

Figure 4a–4d illustrate per-class precision, recall,

and F1-score for the four models. All models

exhibit strong and balanced performance across

the four classes (Benign, Early Pre-B, Pre-B,

Pro-B).

Precision, recall, and F1-score values consistently

exceed 0.90, with most above 0.95. EfficientNet-

B3 achieves the highest and most consistent

metrics, with precision, recall, and F1-score at or

above 0.98 for all classes, confirming its superior

overall accuracy of 98.57%. VGG16 follows

closely, showing near-identical high values except

for slightly lower recall on the Benign class (0.93),

reflecting minor misclassifications observed in its

confusion matrix. DenseNet-121 and ResNet-50

display marginally lower scores, particularly on

the Benign class (precision and F1-score 0.90–

0.95 for ResNet-50), consistent with their higher

error rates in distinguishing benign hematogones.

The uniformly high per-class metrics demonstrate

robust discrimination of subtle morphological

differences among ALL subtypes and benign cells

across all architectures.

3.4 Discussion
The proposed EfficientNet-B3 model achieves the

highest accuracy of 98.57%, surpassing all prior

studies. The proposed VGG16 follows closely at

98.37%, and DenseNet-121 at 97.76%, placing

three of the top four results among the proposed

approaches. Even the proposed ResNet-50

(95.92%) remains competitive with mid-to-high-

tier prior works.

The closest prior result is 98.00% reported by

Bhute et al. using VGG16, followed by 96.07%

https://portal.issn.org/resource/ISSN/3006-7030
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(Haque et al., Incept-ResNet) and 95.45%

(Sampathila et al., ALL-NET). Other studies

range from 70.01% to 92.0%, demonstrating

greater variability in performance.

These results establish EfficientNet-B3 as the new

state-of-the-art for this four-class ALL subtype

classification task, with the proposed transfer

learning framework consistently yielding superior

or highly competitive performance across

architectures.

Figure 5b and 5a compares the classification

accuracies of the proposed models with

previously published results on comparable acute

lymphoblastic leukemia (ALL) blood smear image

datasets.

(a) Comparison of test accuracies with prior studies

https://portal.issn.org/resource/ISSN/3006-7030
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(b) Model Accuracy Comparison Line Chart
Figure 5: Model accuracy comparisons: (a) line
chart showing training progression; (b)

comparison with prior studies on ALL blood

smear datasets.

4 Conclusion

This study presented an automated deep

learning–based framework for accurate

classification of Acute Lymphoblastic Leukemia

(ALL) subtypes using peripheral blood smear
images. This method worked extremely well in

four clinically important groups: Benign, Early

Pre-B, Pre-B, and Pro-B. It did this by using four

sophisticated convolutional neural network

architectures: EfficientNet-B3, VGG16,

DenseNet-121, and ResNet-50. The models that

were examined had the best overall performance.

EfficientNet-B3 had a test accuracy of 98.57%,

which means it was virtually perfect in terms of

precision, recall, and F1-scores for all classes.

This shows that it is strong and effective in

telling the difference between fine-grained
leukemia subtypes. The suggested method works

extremely well because it uses a well planned

preparation and training plan that includes image

standardization, normalization, enhancement

using HSV-based lymphoblasts, data

augmentation, and class-weighted learning to fix
the imbalance in the dataset. The models used a

two-stage transfer learning methodology, first

using generic visual representations from

ImageNet, followed by the customization of these

features to align with the unique structural

patterns seen in blood smear pictures.

Comparative studies showed that VGG16 and

DenseNet-121 did well, even if deeper designs like

ResNet-50 were more badly impacted by class

imbalance, especially when it came to sorting

minority classes. The suggested technique

surpasses several previously reported methods by

attaining equivalent or superior accuracy without

https://portal.issn.org/resource/ISSN/3006-7030
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the need of cumbersome group procedures. The

successful integration of the top-performing model

into a

web-based interface demonstrates the practical

applicability of our work. With this connection,

it’s easy to make quick, accurate, and user-friendly

predictions for all subtypes. The results suggest

that automated deep learning analysis of

peripheral blood smear images might assist

physicians and laboratory personnel in making

better informed decisions, decreasing diagnostic

variability, and enabling precise clinical

assessments promptly.
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