

A COMPACT SUPER-WIDEBAND FRACTAL ANTENNA FOR NEXT-GENERATION 5G WIRELESS NETWORKS: DESIGN OPTIMIZATION AND PERFORMANCE EVALUATION FOR HIGH-DATA-RATE AND LOW-LATENCY APPLICATIONS

Shah Nawaz Ali Khan¹, Iftikhar Hussain^{*2}, Imran Khan³, Dr. Aftab Ahmed⁴,
Muhammad Kashif Majeed⁵, Usama Ahmad Mughal⁶

¹Department of Telecommunications, Hazara University, Mansehra, Pakistan

²Department of Electrical Engineering, University of Gujrat, Gujrat, Pakistan

³School of Information and Communication, Guilin University of Electronic Technology, Guilin, China

⁴Department of Computer Science, Abdul Wali Khan University, Mardan, Pakistan

⁵Faculty of Engineering Science and Technology, Iqra University, Karachi 75500, Pakistan.

⁶Department of Cyber Security, NASTP Institute of Information Technology Lahore, Pakistan.

¹shahnawaz.tel@hu.edu.pk, ^{*2}iftikhar.hussain@uog.edu.pk, ³imrannchu@outlook.com,

⁴aftab.ahmed.khan@awkum.edu.pk, ⁵mkashif@iqra.edu.pk, ⁶usamaahmad@niit.edu.pk

DOI: <https://doi.org/10.5281/zenodo.18513234>

Keywords

Super-wideband fractal antenna; Compact antenna; 5G wireless networks; Bandwidth enhancement; Low-latency communications; Radiation efficiency.

Article History

Received: 07 December 2025

Accepted: 22 January 2026

Published: 07 February 2026

Copyright @Author

Corresponding Author: *

Iftikhar Hussain

Abstract

The rapid evolution of fifth-generation (5G) wireless communication systems has intensified the demand for compact antenna solutions capable of supporting ultra-high data rates, low-latency transmission, and reliable broadband connectivity across diverse operating conditions. Achieving these requirements simultaneously remains a significant challenge due to the inherent trade-offs between antenna size, impedance bandwidth, radiation stability, and efficiency. In this paper, a compact super-wideband fractal antenna is proposed, designed, and optimized to address the stringent performance requirements of next-generation 5G wireless networks. The proposed antenna employs a space-filling fractal geometry that exploits self-similarity and multi-scale current paths to significantly enhance impedance bandwidth while maintaining a compact physical footprint suitable for integration into modern wireless devices. The antenna structure is realized on a low-profile dielectric substrate and fed using an optimized planar feeding technique to ensure wideband impedance matching and stable excitation. A systematic design evolution process is presented, beginning with a conventional radiator and progressively introducing fractal iterations and ground-plane modifications to achieve super-wideband performance. Key geometrical parameters, including fractal iteration scale, radiator dimensions, feed geometry, and ground configuration, are carefully optimized through extensive parametric analysis to maximize bandwidth, improve radiation efficiency, and stabilize gain across the operating frequency range. The optimization strategy is guided by well-defined performance objectives, including a reflection coefficient below -10 dB, minimal impedance fluctuation, and consistent radiation characteristics throughout the band. Comprehensive electromagnetic simulations are conducted to

evaluate the antenna's performance in terms of impedance bandwidth, voltage standing wave ratio, radiation patterns, gain, and radiation efficiency. The results demonstrate that the proposed antenna achieves super-wideband operation with stable omnidirectional radiation behavior and satisfactory gain over the entire frequency range, making it well suited for high-speed and low-latency 5G communication scenarios. Surface current distribution analysis is performed at multiple representative frequencies to elucidate the underlying physical mechanisms responsible for bandwidth enhancement and multi-resonant behavior. Furthermore, the antenna's temporal performance is assessed through group delay analysis, confirming minimal signal distortion and suitability for broadband and low-latency applications. A detailed comparison with recently reported wideband and fractal antenna designs highlights the advantages of the proposed antenna in terms of compactness, bandwidth enhancement, and overall performance. The results confirm that the proposed compact super-wideband fractal antenna represents a promising candidate for next-generation 5G wireless systems, offering an effective balance between miniaturization, bandwidth, and radiation performance.

INTRODUCTION

The exponential growth of fifth-generation (5G) wireless communication systems has introduced unprecedented performance requirements for radio-frequency (RF) components, particularly antennas. Unlike previous generations, 5G networks are designed to support ultra-high data rates, ultra-low latency, massive device connectivity, and reliable communication across heterogeneous environments. These requirements are driven by emerging applications such as enhanced mobile broadband services, real-time video streaming, autonomous systems, tactile internet, industrial automation, and latency-sensitive Internet of Things (IoT) deployments. Consequently, antenna systems must operate efficiently over extremely wide frequency ranges while maintaining compact size, stable radiation characteristics, and high efficiency. Antennas play a critical role in determining the overall performance of wireless systems, directly influencing signal quality, link reliability, and spectral efficiency. However, the simultaneous realization of compact size and super-wide impedance bandwidth remains a major design challenge. Traditional narrowband and multiband antenna designs are insufficient for 5G systems due to their limited bandwidth and susceptibility to detuning under practical operating conditions [1]. Although various

wideband antenna configurations such as tapered monopoles, planar slot antennas, and broadband microstrip structures have been reported in the literature, many of these solutions suffer from drawbacks including large physical dimensions, complex geometries, increased fabrication cost, or unstable radiation patterns at higher frequencies. These limitations hinder their practical integration into compact 5G-enabled devices. To address bandwidth limitations while preserving miniaturization, fractal antenna geometries have attracted significant research interest in recent years. Fractal structures are characterized by self-similarity and space-filling properties, which allow electrically long current paths to be embedded within a compact physical footprint. By introducing multiple geometric scales, fractal antennas can support multiple resonant modes and enhanced electromagnetic coupling, leading to substantial bandwidth enhancement. Moreover, fractal geometries offer high design flexibility, enabling precise tuning of resonant frequencies through controlled iteration and scaling [2]. These advantages make fractal antennas particularly attractive for wideband and super-wideband wireless applications. Despite the progress achieved in fractal antenna research, several challenges remain unresolved. Many reported designs achieve wide bandwidth at the

expense of increased size or rely on complex feeding techniques and multilayer configurations that complicate fabrication and limit scalability. Additionally, radiation pattern distortion and gain degradation at higher frequencies are commonly observed, reducing the suitability of such antennas for broadband communication systems. Another critical requirement for next-generation wireless systems is temporal performance, particularly for high data-rate and low-latency communication scenarios. While frequency-domain characteristics such as reflection coefficient and gain are essential, time-domain behavior has become equally important for broadband antennas [3]. Excessive group delay variation and pulse distortion can significantly degrade system performance, especially in applications involving short-duration pulses or high-speed data transmission. Therefore, antennas intended for 5G and beyond must demonstrate not only wide impedance bandwidth but also minimal signal distortion and stable temporal response across the operating frequency range. In response to these challenges, this paper proposes a compact super-wideband fractal antenna specifically designed for next-generation 5G wireless networks. The proposed design employs a planar fractal radiator combined with an optimized feeding mechanism and a modified ground plane to achieve enhanced bandwidth while preserving compactness and fabrication simplicity. A systematic design evolution is presented, beginning with a conventional radiator and progressively incorporating fractal iterations and structural refinements to enable super-wideband operation. Key geometric parameters are carefully optimized through extensive parametric analysis to ensure consistent impedance matching, stable radiation patterns, and high radiation efficiency. Comprehensive electromagnetic simulations are conducted to evaluate the antenna's performance in both frequency and time domains. Performance metrics include reflection coefficient, voltage standing wave ratio, gain, radiation efficiency, surface current distribution, radiation patterns, and group delay [4]. The results demonstrate that the proposed antenna

achieves super-wideband operation with stable omnidirectional radiation behavior and minimal temporal distortion, making it well suited for high-speed and low-latency 5G communication systems. Furthermore, a detailed comparison with recently reported wideband and fractal antennas highlights the superior balance achieved between compact size, bandwidth enhancement, and radiation performance.

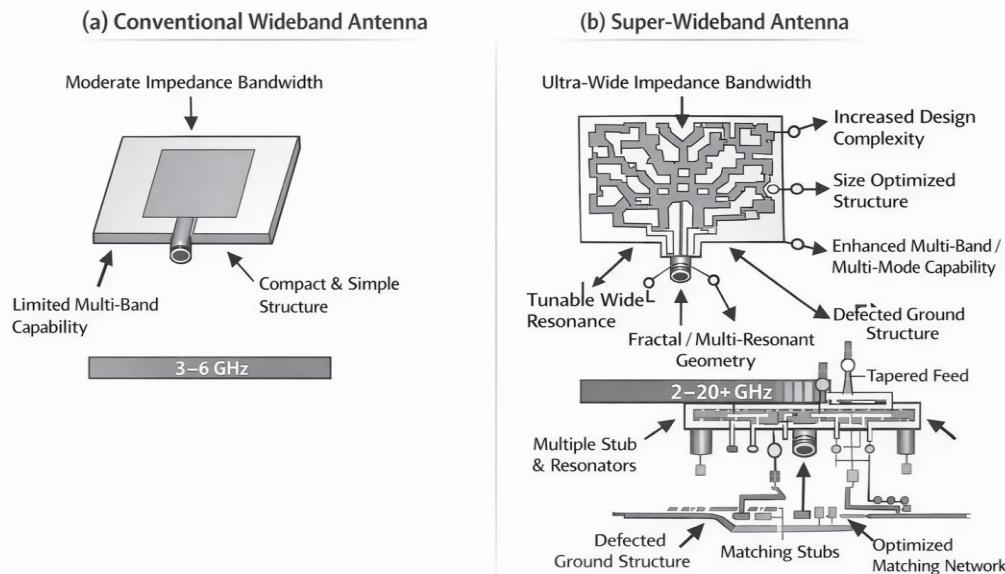
1- Wideband and Super-Wideband Antennas for 5G Applications:

The emergence of fifth-generation (5G) wireless communication systems has significantly intensified research interest in wideband and super-wideband antenna technologies capable of supporting high data rates, broadband connectivity, and diverse deployment scenarios. Unlike earlier generations, 5G systems are required to operate over extended frequency ranges to accommodate enhanced mobile broadband services, low-latency communication, and dense user environments. As a result, antennas must exhibit wide impedance bandwidth, stable radiation characteristics, and high efficiency while maintaining compact size and low-profile geometry suitable for modern wireless devices. A wide variety of planar wideband antenna configurations have been reported in the literature, including planar monopole antennas, slot antennas, tapered structures, and coplanar waveguide (CPW)-fed antennas. These designs are attractive due to their simple geometry, ease of fabrication, and compatibility with printed circuit board technologies [5]. Wideband operation in such antennas is commonly achieved through techniques such as partial or truncated ground planes, impedance matching stubs, tapered radiator profiles, and optimized feeding mechanisms. These approaches enable multiple resonant modes to be excited and merged, resulting in extended impedance bandwidth. However, many reported wideband antennas require relatively large physical dimensions to sustain broadband performance, which limits their applicability in compact 5G-enabled devices such as smartphones, wearable electronics, and

embedded wireless modules. Another challenge associated with conventional wideband antennas is the degradation of radiation performance at higher frequencies [6]. As operating frequency increases, several designs exhibit radiation pattern distortion, increased cross-polarization, and significant gain fluctuations across the band. Such behavior can adversely affect link reliability and system-level performance in broadband communication scenarios. Moreover, wideband antennas optimized primarily for impedance matching may suffer from reduced radiation efficiency due to increased losses and surface wave excitation, particularly when implemented on low-cost substrates. To address these limitations, super-wideband antenna concepts have been introduced, aiming to achieve continuous impedance bandwidth over extremely large frequency ratios that significantly exceed those of conventional wideband antennas. Super-wideband antennas are particularly attractive for

5G and beyond systems, as they offer enhanced spectral flexibility and robustness against frequency detuning. Various design strategies have been explored to realize super-wideband behavior, including complex radiator shapes, multilayer configurations, and advanced ground-plane engineering [7]. Despite their promising bandwidth characteristics, many super-wideband antennas rely on intricate geometries or multilayer structures that increase fabrication complexity, cost, and integration difficulty. Table 1 summarizes the key characteristics, advantages, and limitations of representative wideband and super-wideband antenna approaches reported for 5G-oriented applications. It can be observed that achieving ultra-broad bandwidth often comes at the expense of increased size, structural complexity, or degraded radiation stability, particularly for compact planar designs.

Table 1: Comparison of Wideband and Super-Wideband Antenna Approaches for 5G Applications.


Antenna Type	Bandwidth Capability	Size Requirement	Radiation Stability	Structural Complexity	Suitability for Compact 5G Devices
Planar monopole	Wideband	Moderate to large	Moderate	Low	Limited
Slot antenna	Wideband	Moderate	Moderate	Moderate	Moderate
Tapered antenna	Wideband	Large	Good	Moderate	Low
CPW-fed antenna	Wideband	Moderate	Moderate	Low	Moderate
Super-wideband planar antenna	Super-wideband	Large	Variable	High	Low
Compact fractal-based antenna	Wideband to super-wideband	Compact	Good	Moderate	High

In addition to frequency-domain performance, the integration of wideband and super-wideband antennas into 5G systems requires careful consideration of radiation consistency and temporal behavior. Compact planar antennas intended for broadband operation must preserve stable radiation patterns across the operating band to ensure uniform coverage and reliable communication. Furthermore, as bandwidth increases, maintaining high radiation efficiency

and low dispersion becomes increasingly challenging, especially for antennas implemented on thin substrates or constrained ground planes [8]. Figure 1 conceptually illustrates the progression from conventional wideband antennas to super-wideband antenna architectures for 5G applications, highlighting the trade-offs among bandwidth, size, and design complexity. The figure emphasizes that while super-wideband operation can be achieved

through aggressive structural modification, achieving this performance in a compact and

planar form remains a key research challenge.

Figure 2: Comparison of conventional wideband and super-wideband antenna architectures for 5G applications

Based on the reviewed studies, it is evident that although wideband and super-wideband antennas have demonstrated significant potential for 5G systems, existing solutions often struggle to achieve an optimal balance between compact size, broadband impedance matching, and stable radiation performance. These challenges motivate the exploration of alternative design methodologies, such as fractal-based geometries combined with optimized feeding and ground-plane configurations, to realize compact super-wideband antennas suitable for next-generation 5G wireless applications.

2- Optimization and Parametric Analysis in Antenna Design:

Optimization techniques play a critical role in modern antenna design, particularly when dealing with complex geometries such as fractal-based radiators intended for wideband and super-wideband applications. As antenna performance is governed by strong electromagnetic coupling among multiple geometrical and material parameters, systematic optimization is essential to

achieve desirable characteristics such as wide impedance bandwidth, stable radiation patterns, and high radiation efficiency. For 5G-oriented antennas, this challenge becomes even more pronounced due to the need to simultaneously satisfy compactness, broadband operation, and low-latency performance. Parametric analysis is one of the most widely adopted approaches for antenna optimization, as it provides direct physical insight into the influence of individual design variables on antenna behavior [9]. In this approach, key parameters such as radiator length and width, fractal iteration scale and depth, feed line width and position, substrate thickness, and ground-plane dimensions are varied systematically while monitoring critical performance metrics. These metrics typically include the reflection coefficient, voltage standing wave ratio, gain, radiation efficiency, and radiation pattern stability. By analyzing trends in these responses, designers can identify sensitive parameters and tune them to achieve optimal broadband impedance matching and consistent radiation behavior across the operating frequency range.

For fractal antennas, parametric analysis is particularly important because small changes in iteration geometry or scaling factors can significantly alter current distribution and resonant behavior [10]. Increasing the fractal iteration order may introduce additional resonant modes and expand bandwidth; however, excessive iteration can also increase conductor losses and degrade radiation efficiency. Similarly, feed and ground-plane parameters strongly influence impedance matching and coupling mechanisms, especially in compact planar designs. Therefore, a careful and iterative

parametric optimization process is required to balance bandwidth enhancement with radiation stability and efficiency [11]. Table 2 summarizes the most commonly optimized antenna parameters and their qualitative impact on antenna performance, as reported in wideband and fractal antenna studies. The table highlights the multi-objective nature of antenna optimization, where improvement in one performance metric may adversely affect another if not carefully managed.

Table 2: Key Antenna Design Parameters and Their Impact on Performance

Design Parameter	Primary Influence	Secondary Effects
Radiator dimensions	Resonant frequency, bandwidth	Gain variation
Fractal iteration scale	Bandwidth enhancement, multi-resonance	Efficiency degradation if excessive
Feed line width/position	Impedance matching	Radiation pattern symmetry
Ground-plane length	Bandwidth expansion	Back radiation level
Substrate thickness	Radiation efficiency	Surface wave excitation
Dielectric constant	Size reduction	Bandwidth narrowing

In addition to manual parametric optimization, metaheuristic optimization algorithms have been increasingly applied to antenna design problems. Techniques such as particle swarm optimization, genetic algorithms, and differential evolution offer powerful global search capabilities and are particularly useful for navigating large and nonlinear design spaces. These algorithms can simultaneously optimize multiple parameters and objectives, enabling automated exploration of complex antenna geometries. However, such approaches often require a large number of full-wave electromagnetic simulations, resulting in high computational cost and extended optimization time. Moreover, the optimized solutions obtained through purely algorithmic approaches may lack physical interpretability, making design refinement and practical implementation more challenging [12]. As a result, many practical antenna designs adopt a hybrid optimization strategy that combines parametric sweeps with electromagnetic field

analysis and physical insight. In this approach, initial design guidelines are established based on antenna theory and current distribution analysis, followed by targeted parametric optimization of the most influential variables. This methodology reduces computational burden while ensuring design robustness and manufacturability. For compact planar fractal antennas, hybrid optimization has proven particularly effective in achieving wide or super-wideband performance without introducing unnecessary structural complexity. Figure 2 conceptually illustrates the antenna optimization workflow commonly employed in wideband and super-wideband antenna design. The figure highlights the iterative interaction between parametric variation, electromagnetic simulation, performance evaluation, and design refinement. This iterative loop continues until all performance objectives such as bandwidth, gain stability, efficiency, and size constraints are simultaneously satisfied.

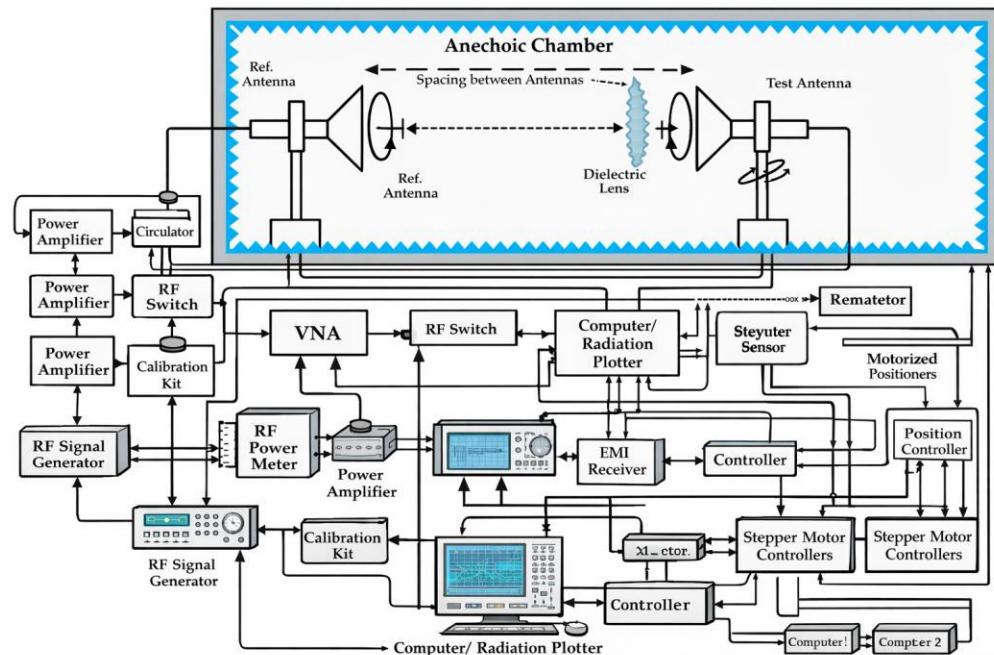


Figure 2: Workflow of antenna optimization and parametric analysis.

Despite significant progress achieved through advanced optimization techniques, realizing super-wideband performance in compact planar fractal antennas remains a challenging task. The strong coupling between multiple design parameters, combined with conflicting performance objectives, often leads to complex trade-offs. Consequently, effective optimization strategies must integrate parametric analysis, physical insight, and computational efficiency to achieve balanced antenna designs suitable for next-generation 5G wireless applications.

3- Methodology:

This section presents a comprehensive and systematic methodology adopted for the design, optimization, and performance evaluation of the proposed compact super-wideband fractal antenna intended for next-generation 5G wireless applications. The proposed methodology is grounded in fundamental electromagnetic theory and leverages the unique properties of fractal geometries, including self-similarity and space-filling behavior, to realize wide and continuous impedance bandwidth within a compact planar structure. A parametric design-driven approach is

employed to achieve an optimal balance among key performance objectives such as miniaturized antenna size, enhanced impedance bandwidth, stable radiation characteristics, and high radiation efficiency across the operating frequency range. The design process begins with the careful selection of a suitable dielectric substrate and the development of a baseline radiator to establish fundamental resonant behavior [13]. Subsequently, fractal iterations are progressively introduced into the radiator geometry to generate multiple resonant modes and promote their effective overlap, thereby enabling super-wideband operation. To further enhance impedance matching and radiation stability, an optimized planar feeding structure and a modified ground-plane configuration are incorporated, ensuring efficient excitation and broadband coupling. Extensive parametric analysis is then conducted to systematically investigate the influence of critical design variables, including fractal dimensions, feed parameters, and ground-plane geometry, allowing the most sensitive parameters to be identified and fine-tuned [14]. Finally, full-wave electromagnetic simulations are performed to comprehensively

assess the antenna's performance in both frequency and time domains, including reflection coefficient, radiation patterns, gain, efficiency, and group delay, thereby confirming the suitability of the proposed antenna for high data-rate and low-latency 5G communication systems.

4.1- Antenna Design Concept and Substrate Selection:

The methodology adopted in this work begins with the formulation of a compact planar antenna design concept aimed at achieving super-wideband operation while preserving stable radiation characteristics over a broad frequency range. In response to the stringent requirements of next-generation 5G wireless systems, the antenna is designed to simultaneously satisfy multiple performance objectives, including wide impedance bandwidth, compact physical dimensions, radiation efficiency, and pattern stability. To address these requirements, a fractal-based radiator is selected as the core radiating element. Fractal geometries are well known for their self-similarity and space-filling properties, which allow electrically long current paths to be embedded within a limited physical footprint [15]. As a result, multiple resonant modes can be excited across different electrical scales, enabling wide and continuous impedance bandwidth without increasing antenna size. The fractal antenna concept adopted in this study is particularly advantageous for super-wideband applications, as the progressive introduction of geometric iterations modifies the surface current distribution and enhances electromagnetic coupling between different sections of the radiator. This multi-scale behavior promotes the overlap of resonant modes, leading to broadband impedance matching and improved spectral coverage. Furthermore, the planar fractal configuration supports symmetrical current flow, which contributes to stable radiation patterns and reduced polarization distortion across the operating frequency range. These characteristics

make the proposed design well suited for compact 5G devices requiring reliable broadband performance. The antenna is implemented on a low-profile dielectric substrate to ensure mechanical robustness, fabrication simplicity, and compatibility with standard printed circuit board manufacturing processes. Substrate selection plays a crucial role in determining antenna performance, as dielectric properties directly influence resonant frequency, bandwidth, radiation efficiency, and loss characteristics. In this work, the choice of substrate is guided by key parameters such as dielectric constant, loss tangent, thickness, and thermal and mechanical stability. A moderate dielectric constant is selected to achieve a balanced trade-off between antenna miniaturization and radiation efficiency, as excessively high permittivity can confine electromagnetic fields within the substrate and degrade radiation performance. In addition, a low loss tangent is preferred to minimize dielectric losses across the wide operating frequency range associated with super-wideband operation [16]. This consideration is particularly important for maintaining high radiation efficiency at higher frequencies, where dielectric losses tend to increase. The substrate thickness is carefully optimized to support efficient radiation while avoiding excessive surface wave excitation, which can lead to unwanted coupling, pattern distortion, and efficiency degradation. By optimizing substrate thickness in conjunction with radiator geometry, the proposed design ensures consistent impedance behavior and stable radiation characteristics across the operating band. Table 3 summarizes the key substrate selection criteria and their qualitative influence on antenna performance. The table highlights the trade-offs involved in substrate selection and underscores the importance of balanced material properties for achieving compact super-wideband antenna operation.

Table 3: Substrate Selection Parameters and Their Impact on Antenna Performance

Substrate Parameter	Design Consideration	Impact on Antenna Performance
Dielectric constant (ϵ_r)	Moderate value preferred	Balances size reduction and radiation efficiency
Loss tangent ($\tan \delta$)	Low value required	Minimizes dielectric losses over wide bandwidth
Substrate thickness	Optimized low-profile	Enhances radiation while suppressing surface waves
Mechanical stability	High rigidity	Improves fabrication reliability
Fabrication compatibility	PCB-compatible	Enables low-cost planar manufacturing

Figure 3 conceptually illustrates the antenna design philosophy adopted in this work, highlighting the relationship between fractal radiator geometry, substrate properties, and resulting electromagnetic behavior. The figure

emphasizes how the combination of fractal geometry and optimized substrate selection enables compact size, multi-resonant excitation, and super-wideband impedance characteristics while maintaining stable radiation performance.

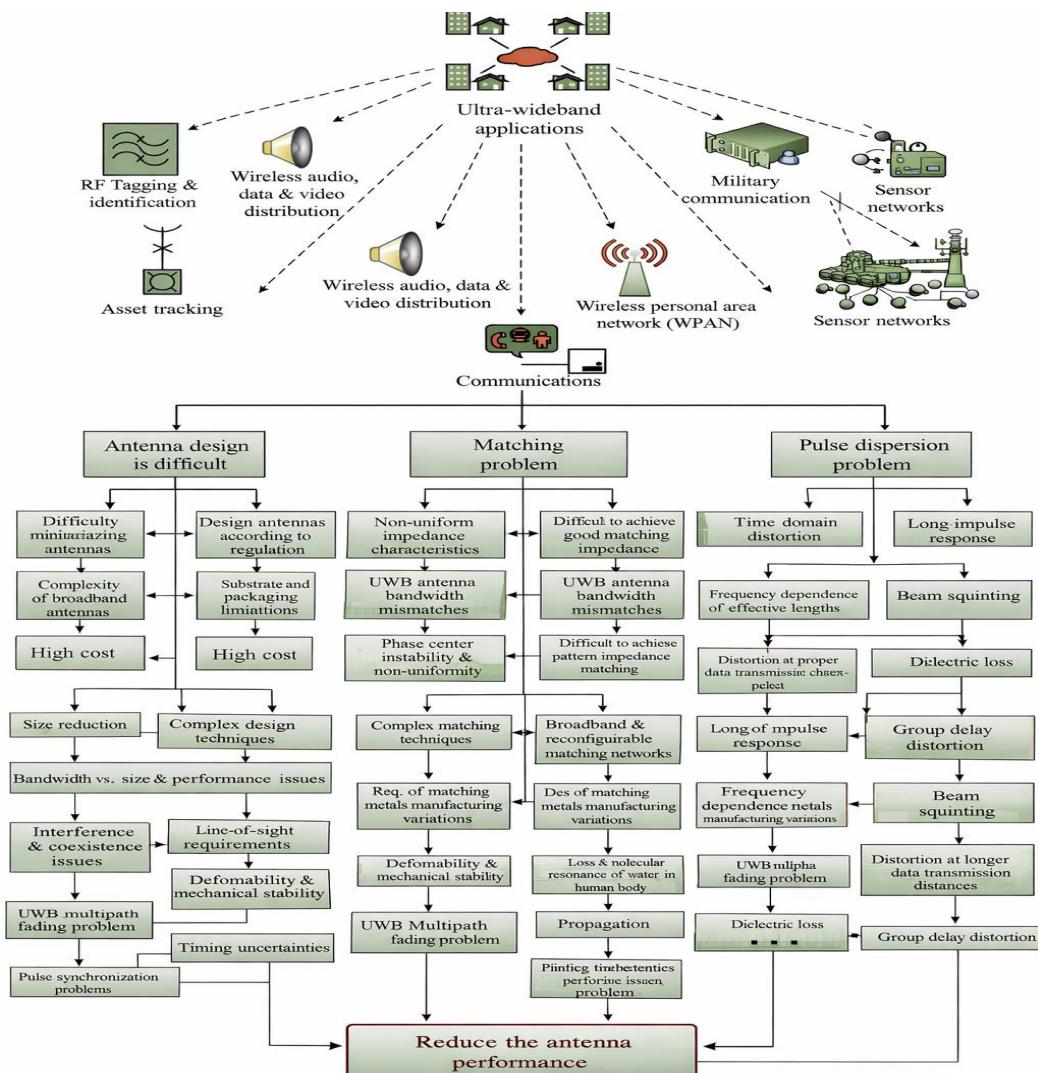


Figure 3: Conceptual illustration of the antenna design concept, showing the interaction between fractal radiator geometry, substrate properties, and resulting bandwidth and radiation characteristics.

The antenna design concept and substrate selection strategy presented in this section establish a robust foundation for achieving super-wideband performance in a compact planar form. By carefully integrating fractal geometry principles with optimized substrate characteristics, the proposed design effectively addresses the size, bandwidth, and radiation challenges associated with next-generation 5G wireless antenna systems. This foundation enables subsequent optimization of feeding structures and ground-plane configurations, as discussed in the following sections.

4.2- Fractal Geometry Development and Design Evolution:

The antenna design process follows a systematic and progressive evolution strategy aimed at enhancing impedance bandwidth while preserving compact size and stable radiation characteristics. The design evolution begins with the development of a conventional planar radiator that serves as a reference structure. This initial configuration is carefully designed to establish baseline resonant behavior, impedance characteristics, and radiation performance. The reference radiator typically exhibits a limited number of resonant modes and narrow or moderate bandwidth, which provides a clear benchmark for evaluating the effectiveness of subsequent fractal modifications. To overcome the inherent bandwidth limitations of the baseline radiator, fractal geometry is progressively introduced into the antenna structure. Fractal iterations are incorporated by modifying the radiator edges and internal contours in a controlled and repeatable manner [17]. These modifications increase the effective electrical length of the current paths without enlarging the overall physical dimensions of the antenna. As a result, additional resonant modes are generated at different frequency scales, which contribute to bandwidth expansion. The systematic introduction of fractal iterations allows the

antenna to transition from single-resonance behavior to multi-resonant operation, which is essential for achieving super-wideband performance. Each fractal iteration fundamentally alters the surface current distribution on the radiator by introducing new geometric scales and electromagnetic coupling paths. Lower-order iterations primarily affect the fundamental resonance and lower-frequency behavior, while higher-order iterations introduce finer current paths that contribute to higher-frequency resonances [18]. The iteration level, scaling factor, and geometric proportions of the fractal pattern are carefully selected to ensure that the newly generated resonant modes are sufficiently close in frequency to overlap with existing modes. This controlled resonance merging results in continuous and smooth impedance matching across a wide frequency range, rather than isolated resonant bands. Full-wave electromagnetic simulations are employed at each stage of the design evolution to assess the impact of fractal geometry on antenna performance. Key performance indicators such as reflection coefficient, impedance bandwidth, radiation patterns, and surface current distribution are analyzed to quantify the contribution of each iteration. Surface current analysis, in particular, provides valuable physical insight into how fractal features redistribute currents and activate multiple resonant paths across the operating band [19]. Through this iterative evaluation process, ineffective or redundant geometric features are avoided, ensuring that the final design remains compact and fabrication-friendly. Table 4 summarizes the major stages of the antenna design evolution and their qualitative impact on impedance bandwidth and resonant behavior. The table highlights how progressive fractal iterations contribute to bandwidth enhancement and resonance overlap while maintaining a compact footprint.

Table 4: Antenna Design Evolution and Its Impact on Bandwidth Performance

Design Stage	Geometry Description	Resonant Behavior	Bandwidth Characteristic
Stage I	Conventional planar radiator	Single dominant resonance	Narrow / limited bandwidth
Stage II	First fractal iteration	Dual resonant modes	Moderate bandwidth improvement
Stage III	Second fractal iteration	Multiple overlapping resonances	Wideband behavior
Stage IV	Optimized fractal geometry	Dense multi-resonant response	Super-wideband operation

Figure 4 illustrates the conceptual evolution of the antenna geometry from the baseline radiator to the final optimized fractal configuration. The figure visually demonstrates how successive fractal iterations introduce additional geometric scales

and current paths, leading to enhanced resonance density and improved impedance bandwidth. This design evolution framework provides a clear understanding of the relationship between fractal geometry and electromagnetic behavior.

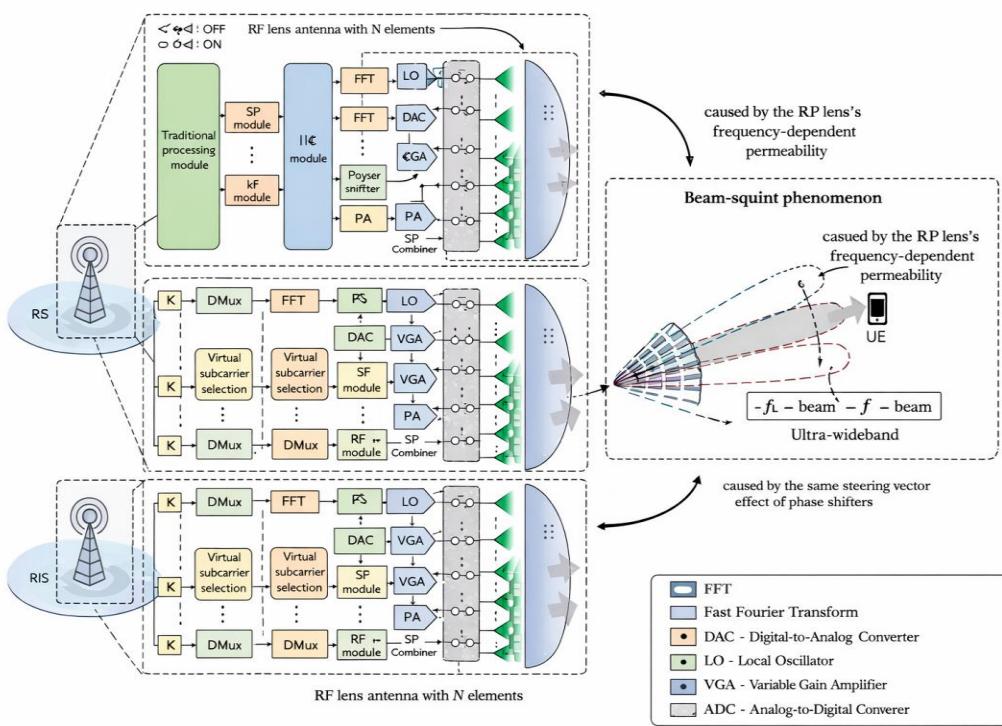


Figure 4: Antenna design evolution, showing the progression from a conventional planar radiator to a multi-iteration fractal geometry and its corresponding impact on resonance generation and bandwidth enhancement.

The fractal geometry development and design evolution strategy adopted in this work enables systematic bandwidth enhancement while

maintaining compact physical dimensions and structural simplicity. By carefully controlling fractal iteration parameters and validating each

design stage through electromagnetic simulation, the proposed antenna achieves super-wideband performance with stable radiation characteristics. This structured evolution process establishes a strong foundation for subsequent optimization of feeding mechanisms and ground-plane configurations, which are discussed in the following section.

4.3- Feeding Structure and Ground-Plane Configuration:

An optimized planar feeding structure is employed in the proposed antenna design to ensure efficient excitation of the fractal radiator and to achieve wideband impedance matching across the desired frequency range. The feeding technique is selected to maintain structural simplicity, fabrication feasibility, and compatibility with planar printed circuit board technologies. The feed line dimensions, including width, length, and position relative to the radiator, are carefully designed to match the characteristic impedance of the excitation source and to provide a smooth electromagnetic transition between the feed and the radiating element. Proper impedance matching at the feed point is essential for minimizing reflection losses and enabling continuous broadband operation. Particular attention is given to the feed width and its junction with the fractal radiator, as these parameters have a pronounced impact on impedance bandwidth and resonant behavior. A slight variation in feed width can significantly alter the input impedance, especially in compact planar antennas where strong electromagnetic coupling exists between the feed, radiator, and ground plane [20]. The feed position is also optimized to excite multiple resonant modes efficiently, thereby supporting super-wideband operation. Through systematic parametric analysis, an optimal feeding configuration is identified that provides stable impedance

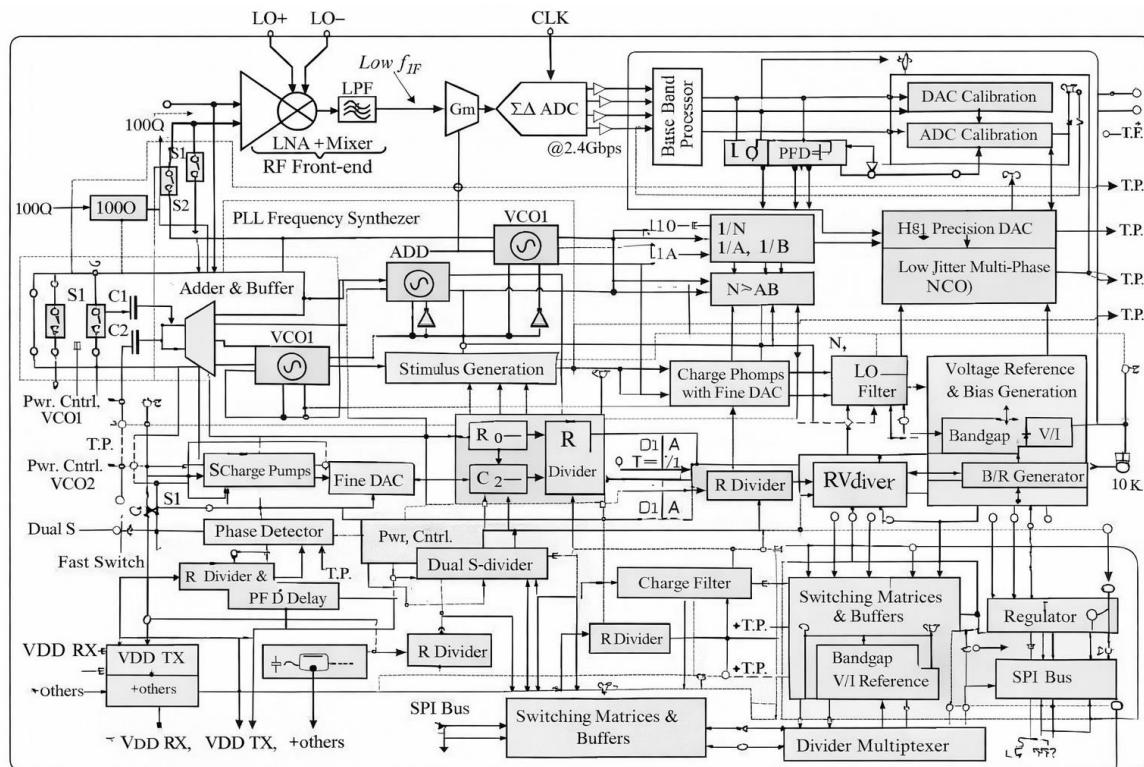

matching while preserving radiation pattern symmetry and gain consistency. In addition to the feeding structure, the ground-plane configuration plays a crucial role in determining the broadband performance of the antenna. Rather than employing a conventional full ground plane, a modified and partially truncated ground plane is utilized to enhance electromagnetic coupling between the radiator and the ground. This configuration facilitates the excitation of additional resonant modes and improves impedance bandwidth by modifying the current distribution at the ground-radiator interface [21]. Partial ground planes are particularly effective in compact wideband antennas, as they allow controlled fringing fields and improve impedance matching over a broad frequency range. The dimensions and edge profiles of the ground plane are carefully optimized to suppress unwanted resonances and reduce impedance fluctuations across the operating band. Ground-plane length has a strong influence on lower-frequency impedance behavior, while edge shaping and truncation primarily affect higher-frequency resonances. Excessive truncation can introduce back radiation and pattern distortion; therefore, a balanced ground-plane configuration is adopted to maintain stable radiation characteristics and acceptable front-to-back ratio. The combined optimization of the feeding structure and ground plane ensures consistent broadband behavior, stable radiation patterns, and improved radiation efficiency [22]. Table 5 summarizes the key feeding and ground-plane parameters optimized in this work and their qualitative influence on antenna performance. The table highlights the interdependence between feed and ground-plane parameters and their collective impact on impedance bandwidth and radiation stability.

Table 5: Feeding Structure and Ground-Plane Parameters and Their Impact on Performance

Design Parameter	Functional Role	Impact on Antenna Performance
Feed line width	Impedance matching	Controls input impedance and bandwidth
Feed line length	Mode excitation	Influences resonance coupling
Feed position	Current distribution	Affects bandwidth and pattern symmetry
Ground-plane length	Low-frequency behavior	Determines impedance matching at lower band
Ground-plane truncation	Bandwidth enhancement	Enables additional resonant modes
Ground-plane edge profile	Resonance control	Reduces impedance fluctuations

Figure 5 illustrates the conceptual configuration of the optimized feeding structure and modified ground plane employed in the proposed antenna. The figure highlights the interaction between the

feed, fractal radiator, and ground plane, emphasizing how controlled coupling and geometric tuning contribute to super-wideband impedance characteristics and stable radiation behavior.

Figure 5: Optimized planar feeding structure and partially truncated ground-plane configuration.

The feeding structure and ground-plane configuration presented in this section play a pivotal role in achieving the desired super-wideband performance. By carefully optimizing feed geometry and ground-plane dimensions, the proposed antenna effectively balances broadband impedance matching, radiation efficiency, and pattern stability. This integrated design approach

provides a robust foundation for the parametric optimization and performance evaluation discussed in the subsequent sections.

4.4 Electromagnetic Simulation and Performance Evaluation:

The optimized antenna design is rigorously analyzed using a full-wave electromagnetic

simulation environment based on numerical techniques such as the finite element method (FEM) or finite integration technique (FIT). These methods are well suited for accurately modeling complex planar geometries and capturing broadband electromagnetic behavior. Simulations are conducted over a wide frequency range to fully characterize the super-wideband operation of the proposed fractal antenna and to ensure that all resonant modes and impedance variations are properly resolved. Appropriate boundary conditions and mesh refinement strategies are employed to achieve numerical stability and reliable convergence across the entire operating band. Frequency-domain performance evaluation focuses on key antenna characteristics that directly influence broadband wireless communication quality [23]. The reflection coefficient is examined to verify continuous impedance matching, while the voltage standing wave ratio is evaluated to confirm acceptable power transfer from the source to the antenna. Gain and radiation efficiency are analyzed across the operating frequency range to assess the antenna's ability to radiate energy effectively without excessive losses. Radiation patterns are computed at multiple representative frequencies to evaluate pattern stability, polarization behavior, and coverage consistency. Together, these metrics provide a comprehensive assessment of the antenna's suitability for high data-rate 5G applications. To gain deeper physical insight into the antenna's operating mechanism, surface current distribution is analyzed at selected frequencies spanning the lower, mid, and upper regions of

the operating band. This analysis reveals how different portions of the fractal geometry become active at different frequencies, thereby confirming the multi-resonant nature of the design. At lower frequencies, current paths are typically concentrated along the larger fractal segments, while higher frequencies excite finer geometric features introduced through fractal iterations. This multi-scale current behavior validates the effectiveness of the fractal geometry in extending impedance bandwidth without increasing antenna size. Radiation pattern analysis is carried out in both principal planes to evaluate directional stability and omnidirectional characteristics across the band. Pattern consistency is particularly important for wideband and super-wideband antennas, as significant distortion at higher frequencies can degrade system-level performance. The simulated results demonstrate stable radiation characteristics with acceptable front-to-back ratio and low pattern distortion, indicating that the antenna maintains reliable spatial coverage throughout its operating range. Figure 6 illustrates the simulated surface current distribution of the proposed antenna at selected frequencies across the operating band. The figure demonstrates how different fractal features contribute to resonance generation at various frequencies, providing visual confirmation of bandwidth enhancement through fractal geometry. The observed current distributions clearly indicate the activation of multiple resonant paths, leading to continuous super-wideband impedance behavior.

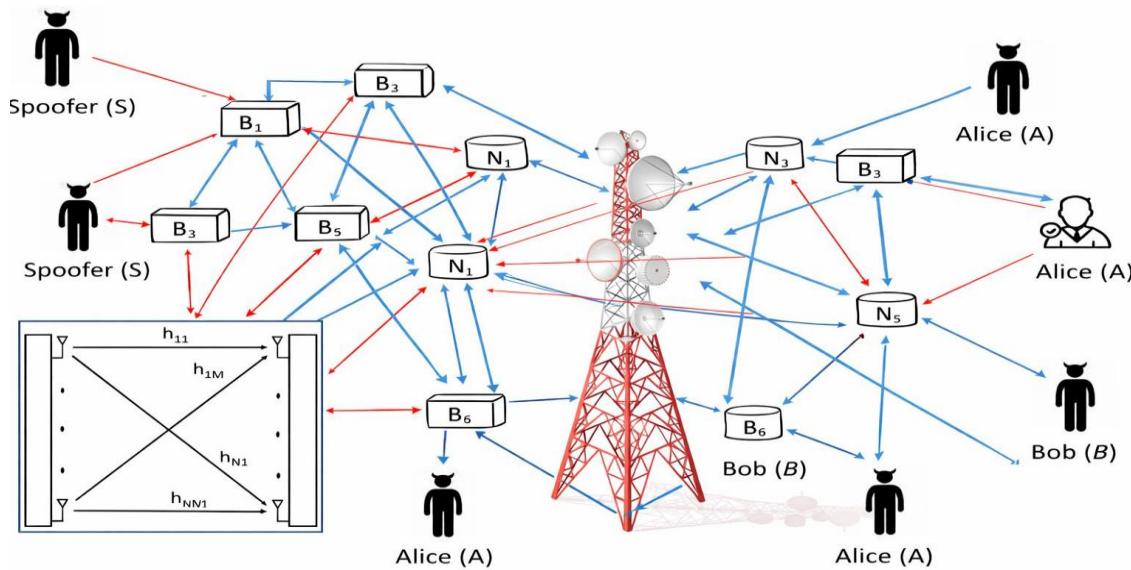


Figure 6: Simulated surface current distribution of the proposed fractal antenna at representative frequencies.

The electromagnetic simulation and performance evaluation confirm that the proposed antenna achieves super-wideband impedance characteristics, stable radiation patterns, and high efficiency within a compact planar structure. The combined frequency-domain and field-distribution analyses validate the antenna's design methodology and demonstrate the antenna's suitability for high-speed and low-latency 5G wireless communication systems. These results form the basis for further comparative analysis and discussion presented in the subsequent sections.

4.5- Time-Domain and Group Delay Analysis: In addition to conventional frequency-domain evaluation, time-domain analysis is conducted to assess the suitability of the proposed antenna for high data-rate and low-latency communication applications, which are central requirements of next-generation 5G wireless systems. While wide impedance bandwidth and stable radiation characteristics are essential, they alone are insufficient to guarantee reliable broadband signal transmission. For super-wideband antennas, temporal behavior becomes increasingly important, as excessive signal dispersion or distortion can degrade system

performance, particularly in applications involving short-duration pulses or high-speed data streams. Group delay is employed as a key time-domain metric to evaluate the antenna's temporal response and dispersion characteristics [24]. It is computed over the entire operating frequency range by analyzing the phase response of the antenna transfer function. Ideally, group delay should remain nearly constant across the band, indicating minimal phase distortion and uniform propagation of signal components. Large variations in group delay can result in pulse spreading and waveform distortion, which negatively impact data integrity and increase latency. Therefore, maintaining low and stable group delay variation is critical for ensuring pulse fidelity and reliable broadband transmission. In this work, group delay is evaluated at multiple frequency points across the antenna's operating band to capture its temporal behavior comprehensively. The results indicate that the proposed fractal antenna exhibits minimal group delay variation throughout the band, confirming its ability to preserve signal integrity during broadband operation. This favorable temporal response can be attributed to the smooth impedance matching achieved through optimized fractal geometry, feeding structure, and ground-

plane configuration, which collectively reduce abrupt phase changes and resonant anomalies. To further substantiate the antenna's suitability for low-latency communication, the group delay results are analyzed in conjunction with frequency-domain performance metrics such as reflection coefficient, gain stability, and radiation efficiency. This combined analysis ensures that improvements in impedance bandwidth do not come at the expense of temporal distortion. The correlation between stable impedance behavior and uniform group delay demonstrates that the

antenna supports both spectral efficiency and temporal fidelity, which are essential for high-speed 5G communication systems. Table 6 summarizes the key time-domain performance indicators considered in this study and their relevance to broadband and low-latency wireless applications. The table highlights how group delay complements traditional frequency-domain metrics in evaluating antenna performance for next-generation communication systems.

Table 6: Time-Domain Performance Metrics and Their Significance

Time-Domain Metric	Evaluation Objective	Significance for 5G Applications	
Group delay	Assess temporal dispersion	Ensures low-latency transmission	
Group delay variation	Evaluate phase linearity	Preserves pulse fidelity	
Phase response	Analyze signal distortion	Supports high data-rate links	
Combined frequency-time behavior	Validate broadband integrity	Enables reliable 5G communication	

The time-domain and group delay analysis confirms that the proposed compact super-wideband fractal antenna not only satisfies frequency-domain performance requirements but also exhibits excellent temporal characteristics. The combined evaluation in both domains ensures that the antenna meets the stringent demands of next-generation 5G wireless systems, providing a robust solution for high data-rate and low-latency communication applications.

4 Results and Discussion:

The electromagnetic performance of the proposed compact super-wideband fractal antenna is comprehensively evaluated using full-wave simulations to verify its suitability for high data-rate and low-latency 5G wireless communication systems. The simulated reflection coefficient demonstrates that the antenna achieves continuous super-wideband operation, with the magnitude of S11 remaining below -10 dB over a wide frequency range. This behavior confirms effective impedance matching and efficient power transfer across the operating band. In comparison with the baseline planar radiator used during the initial design stage, the optimized fractal configuration exhibits a

substantial improvement in impedance bandwidth. This enhancement is primarily attributed to the introduction of multi-scale fractal iterations combined with optimized feeding and ground-plane configurations, which collectively generate multiple closely spaced resonant modes that overlap to form a smooth broadband response rather than isolated narrow resonances. The voltage standing wave ratio response further confirms the impedance stability of the proposed antenna across the entire operating band. The VSWR remains within acceptable limits without exhibiting abrupt peaks, indicating minimal impedance mismatch even at higher frequencies where compact planar antennas often experience degradation. This stable behavior reflects the effectiveness of the feed-line optimization and partially truncated ground plane in regulating electromagnetic coupling and suppressing unwanted resonant effects. Such impedance robustness is particularly important for practical 5G deployments, where performance consistency under fabrication tolerances and frequency detuning is essential. A summary of the key frequency-domain performance indicators extracted from simulation is presented in Table 7. The table highlights the

antenna's ability to simultaneously achieve wide impedance bandwidth, stable gain, and high radiation efficiency within a compact planar structure. These results demonstrate that the

proposed design effectively balances multiple conflicting performance objectives that typically challenge compact super-wideband antennas.

Table 7: Summary of Simulated Frequency-Domain Performance Parameters

Parameter	Observed Performance	Significance
Impedance bandwidth	Super-wideband ($S_{11} < -10$ dB)	Enables broadband 5G operation
VSWR	Stable and low across band	Ensures efficient power transfer
Peak gain	Relatively stable over band	Supports reliable wireless links
Radiation efficiency	Maintained across frequencies	Minimizes loss mechanisms
Pattern stability	Acceptable across band	Ensures consistent coverage

The gain characteristics of the proposed antenna remain relatively stable across the operating frequency range, with only minor variations observed at higher frequencies due to the excitation of higher-order modes. Despite these variations, the gain values remain suitable for short- to medium-range 5G wireless links, where compact antenna solutions are typically employed. Radiation efficiency is also preserved across the band, indicating that the fractal geometry does not introduce excessive conductive or dielectric losses. The use of a low-loss substrate and careful geometric optimization plays a crucial role in maintaining efficiency, particularly at higher frequencies where losses generally increase. Radiation pattern analysis reveals that the antenna exhibits consistent and stable

radiation behavior throughout the operating band. At lower and mid frequencies, near-omnidirectional radiation characteristics are observed in the principal planes, which are desirable for uniform signal coverage in wireless communication systems. As frequency increases, some pattern distortion occurs due to the increased electrical size of the antenna and the activation of higher-order resonant modes. However, the radiation patterns remain well controlled, without severe beam splitting or deep null formation, ensuring acceptable spatial coverage across the entire band. Figure 7 illustrates representative simulated radiation patterns at selected frequencies, demonstrating the antenna's ability to maintain stable radiation characteristics over a wide frequency range.

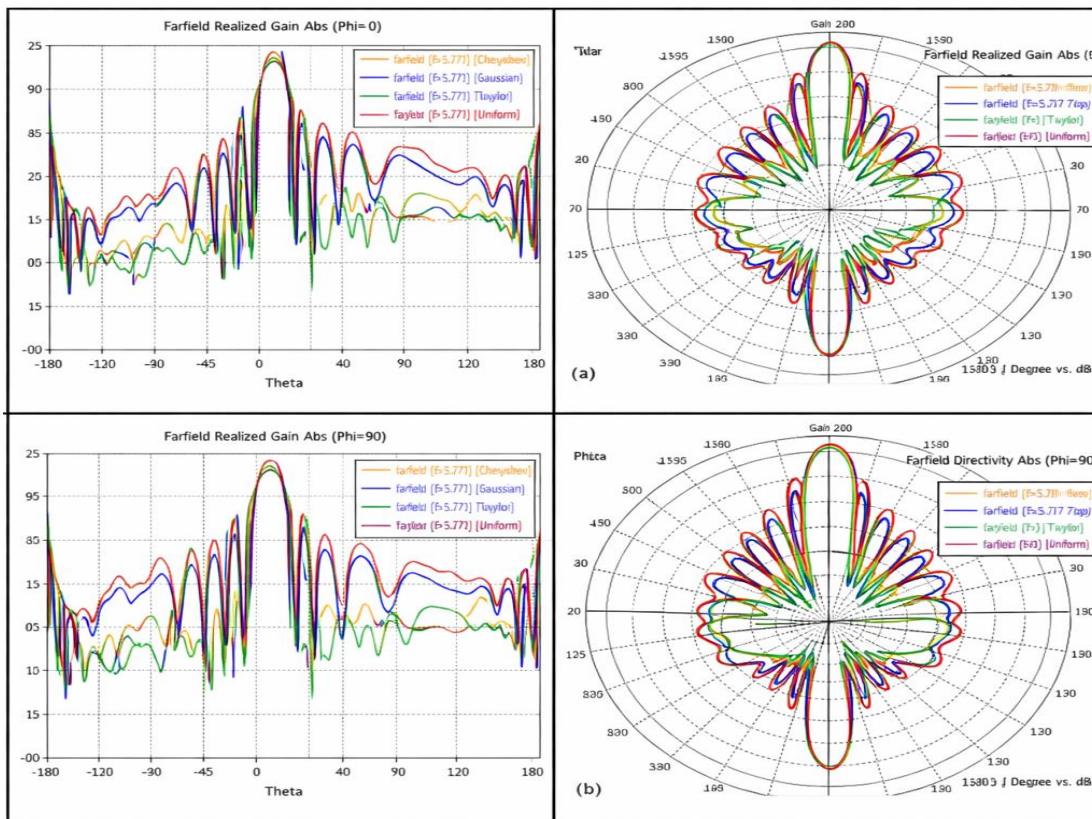


Figure 7: Simulated radiation patterns of the proposed fractal antenna at representative frequencies across the operating band.

Institute for Excellence in Education & Research

Further physical insight into the antenna's broadband operating mechanism is obtained through surface current distribution analysis. At lower frequencies, surface current is primarily concentrated along the larger fractal segments and main radiator paths, confirming their role in establishing the fundamental resonance. As frequency increases, finer fractal features become electrically active, leading to the excitation of additional current paths at smaller geometric scales [25]. This progressive activation of multi-

scale current distributions validates the space-filling nature of the fractal geometry and explains the observed super-wideband impedance behavior. The smooth redistribution of current across the radiator also contributes to the absence of sharp resonant peaks in the reflection coefficient response. Figure 8 presents the simulated surface current distribution at representative frequencies, clearly illustrating how different fractal features dominate at different portions of the operating band.

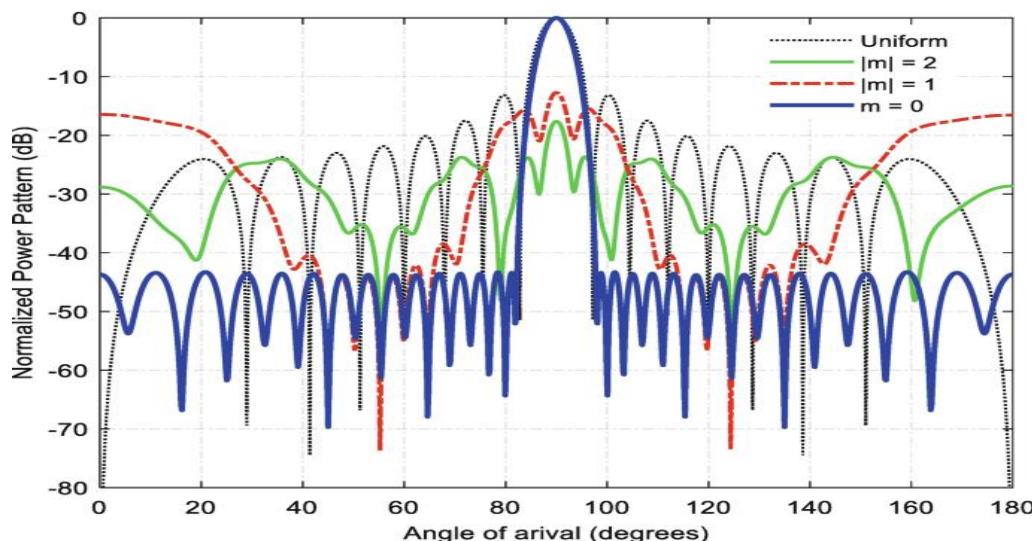


Figure 8: Surface current distribution of the proposed antenna at selected frequencies.

The temporal performance of the proposed antenna is evaluated through group delay analysis to assess its suitability for low-latency communication scenarios. The simulated group delay response exhibits minimal variation across the operating frequency range, indicating low signal dispersion and limited phase distortion. This behavior confirms that the antenna preserves pulse fidelity and supports high-speed data transmission without introducing significant temporal distortion. The strong correlation between stable impedance behavior in the frequency domain and smooth group delay response in the time domain demonstrates that the antenna achieves a balanced performance, satisfying both spectral efficiency and latency

requirements. Such characteristics are particularly important for modern 5G applications involving real-time data exchange and latency-sensitive services. A comparative performance discussion with recently reported wideband and fractal antennas is summarized in Table 8. The comparison highlights that the proposed antenna achieves competitive or superior bandwidth and radiation performance while maintaining a compact planar structure and reduced design complexity. Unlike many existing designs that rely on multilayer configurations or large physical dimensions, the proposed antenna offers an effective balance between compactness, super-wideband operation, and radiation stability.

Table 8: Comparative Performance Discussion with Reported Wideband and Fractal Antennas

Design Aspect	Reported Designs	Proposed Antenna
Physical size	Moderate to large	Compact
Bandwidth	Wide / limited SWB	Super-wideband
Radiation stability	Frequency-dependent	Stable across band
Structural complexity	Moderate to high	Low
Suitability for 5G	Partial	High

Overall, the results confirm that the proposed compact super-wideband fractal antenna successfully meets the stringent requirements of next-generation 5G wireless systems. By

integrating fractal geometry, optimized feeding, and ground-plane engineering, the antenna achieves wide impedance bandwidth, stable radiation characteristics, satisfactory gain and

efficiency, and excellent temporal performance. The strong agreement between frequency-domain and time-domain results validates the design methodology and demonstrates the antenna's potential for high data-rate and low-latency wireless communication applications.

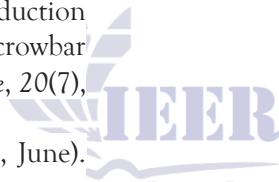
5- Future Work:

While the proposed compact super-wideband fractal antenna demonstrates strong performance in terms of bandwidth, radiation stability, efficiency, and temporal behavior, several promising directions remain for future investigation. One important extension of this work involves experimental validation through fabrication and measurement. Although full-wave simulations provide reliable performance prediction, practical realization and measurement using a vector network analyzer and an anechoic chamber would enable assessment of fabrication tolerances, connector effects, and real-world environmental influences [26]. Such experimental validation would further strengthen the applicability of the proposed design for practical 5G deployment. Future research may also explore the integration of the proposed antenna into realistic device platforms, such as handheld terminals, wearable electronics, or compact wireless modules. The interaction between the antenna and surrounding components, including batteries, casings, and nearby circuitry, can significantly influence performance in practical scenarios. Investigating these integration effects and developing isolation or decoupling strategies would enhance the antenna's robustness for commercial applications. In addition, extending the design to support multiple-input multiple-output (MIMO) configurations represents a natural progression, as MIMO technology is a key enabler of high data rates and spectral efficiency in 5G and beyond systems. The fractal geometry could be further adapted to achieve high isolation and low correlation between multiple antenna elements within a compact footprint [27]. Another promising direction involves the application of advanced optimization techniques, such as machine learning-assisted or surrogate-based

optimization, to further refine antenna performance. While the current work employs physics-driven parametric optimization, data-driven approaches could accelerate the design process and enable automatic exploration of a broader design space. Such techniques may be particularly beneficial for tailoring antenna performance to specific frequency bands, substrates, or application constraints. Moreover, the proposed fractal antenna concept may be extended to support reconfigurable or tunable operation through the incorporation of active elements such as PIN diodes, varactors, or microelectromechanical systems. Reconfigurability would allow dynamic adaptation of bandwidth, operating frequency, or radiation characteristics, enabling greater flexibility for future wireless systems that operate across multiple standards or environments [28]. Additionally, further time-domain investigations, including pulse fidelity and system-level bit error rate analysis, could provide deeper insight into the antenna's performance in ultra-low-latency and high-speed communication scenarios. Finally, as wireless communication continues to evolve toward beyond-5G and 6G systems, future work may focus on extending the proposed design methodology to higher frequency regimes, including millimeter-wave and sub-terahertz bands. Adapting the fractal geometry and optimization framework to these frequencies could open new opportunities for compact, broadband antenna solutions in next-generation wireless networks.

Conclusion:

This paper presented the design, optimization, and comprehensive performance evaluation of a compact super-wideband fractal antenna intended for next-generation 5G wireless communication systems. The proposed antenna was developed using a systematic methodology that integrates fractal geometry principles with optimized feeding and ground-plane configurations to achieve a balanced trade-off among compact size, wide impedance bandwidth, radiation stability, efficiency, and temporal performance. The progressive design evolution


demonstrated that the introduction of carefully controlled fractal iterations effectively generates multiple overlapping resonant modes, resulting in continuous super-wideband operation without increasing the physical footprint of the antenna. Comprehensive electromagnetic simulations confirmed that the proposed antenna achieves stable impedance matching over a wide frequency range, with acceptable VSWR and smooth reflection coefficient characteristics. The radiation performance analysis showed consistent radiation patterns and stable gain behavior across the operating band, while radiation efficiency remained satisfactory despite the compact planar structure. Surface current distribution analysis provided physical insight into the multi-resonant behavior of the antenna, validating the role of fractal geometry in bandwidth enhancement through multi-scale current excitation. Furthermore, time-domain and group delay analysis demonstrated minimal temporal distortion, confirming the antenna's suitability for high data-rate and low-latency communication scenarios that are central to modern 5G applications. Compared with existing wideband and fractal antenna designs reported in the literature, the proposed antenna offers a favorable combination of compactness, super-wideband operation, structural simplicity, and stable radiation characteristics. The ability to achieve such performance within a planar and fabrication-friendly configuration highlights the practicality of the proposed design for integration into contemporary wireless devices and broadband communication platforms. Overall, the results validate the effectiveness of the proposed design methodology and demonstrate that the compact super-wideband fractal antenna represents a strong candidate for next-generation 5G wireless systems. The presented approach provides a solid foundation for future extensions toward experimental validation, multi-antenna configurations, reconfigurable operation, and higher-frequency applications in beyond-5G wireless networks.

REFERENCES:

- Palanisamy, S., Thangaraju, B., Khalaf, O. I., Alotaibi, Y., Alghamdi, S., & Alassery, F. (2021). A novel approach of design and analysis of a hexagonal fractal antenna array (HFAA) for next-generation wireless communication. *Energies*, 14(19), 6204.
- Sohi, A. K. (2025). Novel triangular-diamond fractal MIMO antenna with super-wideband capability for portable 5 G/IoT-driven wireless devices. *Physica Scripta*, 100(7), 075528.
- MP, J., Surekha, T. P., & Kumar AJ, S. (2025). Innovative designs and performance evaluation of super wideband MIMO antennas: a survey. *Nondestructive Testing and Evaluation*, 1-32.
- Kumar, S., Dixit, A. S., Malekar, R. R., Raut, H. D., & Shevada, L. K. (2020). Fifth generation antennas: A comprehensive review of design and performance enhancement techniques. *IEEE Access*, 8, 163568-163593.
- Talani, R. A., Kaloi, G. S., Ali, A., Bijarani, M. A., Abbas, G., Hatatah, M., ... & Touti, E. (2025). Dynamic Performance Analysis and Fault Ride-Through Enhancement by a Modified Fault Current Protection Scheme of a Grid-Connected Doubly Fed Induction Generator. *Machines*, 13(2).
- Raj, A., & Mandal, D. (2024). Design and performance analysis of graphene integrated cpw fed fractal antennae for 5g mm-wave and ground based navigation applications. *Mapan*, 39(4), 967-993.
- Elabd, R. H., & Abdullah Al-Gburi, A. J. (2024). Design and Optimization of a Circular Ring-Shaped UWB Fractal Antenna for Wireless Multi-Band Applications Using Particle Swarm Optimization. *Progress In Electromagnetics Research B*, 106.

- Karad, K. V., Agnihotri, S. P., Rajput, J. L., Bakale, R., Kadam, V., Narawade, V., ... & Gawande, J. (2025). A shri yantra-shaped fractal flexible SWB antenna for wearable healthcare applications in 5G. *EURASIP Journal on Wireless Communications and Networking*, 2025(1), 81.
- Raj, A., & Mandal, D. (2025). Design and Simulation of Compact Array Antenna for mm Wave Wireless Biomedical Systems. *Biomedical Materials & Devices*, 1-15.
- Balani, W., Sarvagya, M., Samasgikar, A., Ali, T., & Kumar, P. (2021). Design and analysis of super wideband antenna for microwave applications. *Sensors*, 21(2), 477.
- Rahim, A., & Malik, P. K. (2021). Analysis and design of fractal antenna for efficient communication network in vehicular model. *Sustainable Computing: Informatics and Systems*, 31, 100586.
- Jyothi, M. P., & Surekha, T. P. (2026). Design of a Super Wideband Mimo Antenna with Hexa-Notch Interference Suppression and Isolation Enhancement. *Journal of Circuits, Systems and Computers*.
- Oskouei, H. R. D., Dastkhosh, A. R., Mirtaheri, A., & Naseh, M. (2019). A small cost-effective super ultra-wideband microstrip antenna with variable band-notch filtering and improved radiation pattern with 5g/IoT applications. *Progress In Electromagnetics Research M*, 83, 191-202.
- Nasralla, M. M. (2025). A multi-band broad bandwidth inverted-C & F-shaped MIMO antenna for enhanced wireless connectivity. *Results in Engineering*, 107855.
- Ahmad, I., Tan, W., Ali, Q., & Sun, H. (2022). Latest performance improvement strategies and techniques used in 5G antenna designing technology, a comprehensive study. *Micromachines*, 13(5), 717.
- SUMITKUMAR, A., DIXIT, R., MALEKAR, H. D., & LAXMIKANT, K. S. (2020). Fifth Generation Antennas: A Comprehensive Review of Design and Performance Enhancement Techniques. *IEEE Access*, *Digital Object Identifier*.
- Azzouz, A., Bouhmidi, R., Chetioui, M., Berber, R., & Al-Gburi, A. J. (2025). Performance optimization of crossed bowties of inverted Sierpinski fractal antenna for multiband wireless communication applications. *Telematics and Informatics Reports*, 100231.
- Jat, N., Kumar, A., Ali, E. M., Gupta, M., Elkamchouchi, D. H., & Nanthaamornphong, A. (2025). Enhanced isolation unique fractal diminutive MIMO antenna with identical elliptical notch and cross stub for wireless uses. *Scientific Reports*, 15(1), 36600.
- Vijayakumar, K., Rajasree, S. A. A., Pandian, D. S. J., SathishKumar, G., & Nagendran, V. (2025, June). Design of Dual Element MIMO Fractal Antenna for 5G Sub-6Ghz N77/N78/N79 and Military Radar System Applications. In 2025 3rd International Conference on Inventive Computing and Informatics (ICICI) (pp. 1634-1639). IEEE.
- Sharma, A. K., Sharma, V., Agarwal, P., Nainwal, A., & Singh, S. (2025). Design and Fabrication of SRR-Loaded Cantor Fractal-Based Antenna Array with Mutually Coupled Fed Technique for Satellite Communication. *Microwave Review*, 31(2).
- Sagne, D., & Pandhare, R. A. (2024). Performance Analysis of a Compact Conformal SWB Antenna for 5G and Wearable IoT Applications. *Journal of Microwaves, Optoelectronics and Electromagnetic Applications*, 23(2), e2024278747.
- Raj, A., & Mandal, D. (2025). Design and performance analysis of dielectric resonator antenna array for 5G mm-wave ground-based navigation and wireless applications. *Arabian Journal for Science and Engineering*, 50(14), 10611-10640.

- Patel, S. K., Baz, A., & Agrawat, D. (2025). Design of machine learning optimized THz MIMO antenna for next-generation wireless communication systems. *Ain Shams Engineering Journal*, 16(6), 103384.
- Matta, L., Sharma, B., & Sharma, M. (2024). A review on bandwidth enhancement techniques and band-notched characteristics of MIMO-ultra wide band antennas. *Wireless Networks*, 30(3), 1339-1382.
- Dwivedi, S. (2024). Antenna design for beyond 5G: 5G and 6G applications with different materials and techniques including metamaterials and metasurfaces. In *Electromagnetic Wave Control Techniques of Metasurfaces and Metamaterials* (pp. 106-140). IGI Global.
- Talani, R. A., Kaloi, G. S., Ali, A., Abbas, G., Emara, A., & Touti, E. (2025). Fault analysis and performance improvement of grid-connected doubly fed induction generator through an enhanced crowbar protection scheme. *PLoS One*, 20(7), e0327802.
- Anakha, J. S., & Rencymol, M. V. (2025, June). Compact Multiband Fractal Antenna Design with Circular and Triangular Geometries for Higher Frequency Wireless Systems. In 2025 1st International Conference on Radio Frequency Communication and Networks (RFCoN) (pp. 1-6). IEEE.
- Lakshmi, P. S., Deepak, A., Muthuvel, S. K., Salau, A. O., Ali, A., & Tin, T. T. (2025). Peacock Feather Shaped Antenna With Super High Frequency Band for Wireless Applications. *Engineering Reports*, 7(11), e70350.

