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Abstract
Fundus imaging is a non-invasive method for screening retina and is widely used
for diagnosis of ophthalmological diseases. For early detection of glaucoma,
clinically relevant structural changes in the optic nerve head, neuroretinal rim,
and peripapillary region can be visualized in fundus images. In this study, we
investigate automated referable glaucoma detection using deep learning ensemble
model trained on the publicly available JustRAIGS Challenge dataset. We have
proposed an independent ensemble framework combining convolutional and
transformer-based architectures, specifically EfficientNet-B3 and Swin
Transformer Tiny, to leverage complementary feature representations. To address
class imbalance between referable and non-referable cases, generative adversarial
network–based data augmentation was employed. The proposed ensemble
achieved competitive performance across clinically relevant evaluation metrics,
demonstrating its potential for robust and scalable glaucoma screening.
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Glaucoma is one of the leading causes of

irreversible blindness worldwide and early

detection is crucial for preventing long-term

vision loss. However, reliable screening

methods often require expert assessment,

specialized equipment, and extensive clinical

resources that are limited particularly in low-

resource settings. In recent years, deep learning

methods emerged as a powerful tool for

automating the analysis of ophthalmic images,

offering the potential to support large-scale

glaucoma screening through fast, accurate, and

reproducible predictions.

The JUSTified Referral in AI for Glaucoma

Screening (JustRAIGS) Challenge provides a

standardized benchmark for evaluating

machine learning models on the task of

referable vs. non-referable glaucoma detection

using fundus images. The dataset aims to

bridge the gap between algorithm development

and real-world deployment by focusing on

clinically meaningful referral decisions rather

than simple disease classification.

This work is an independent analysis of the

JustRAIGS dataset using a deep learning

ensemble model of EfficientNet-B3 and Swin

Transformer Tiny architectures. The objective

of this study is to investigate whether

combining convolutional and transformer-

based vision models can improve robustness,

sensitivity, and generalization in glaucoma

detection. Additionally, active learning and

data augmentation strategies were

incorporated to enhance model performance

on limited and imbalanced data that is a

common challenge in ophthalmic datasets.

The findings of this analysis provide good

insight into the effectiveness of ensemble deep

learning methods for automation of glaucoma

referral decisions, and it also gives us foresight

on the potential of AI-assisted tools to support

early diagnosis in clinical and community-

based screening environments.

2. Literature Review

Glaucoma is one of the main causes of

permanent vision loss around the globe. Early

detection is critical to prevent further damage.

Fundus images are commonly used for

screening because it allows doctors see changes

in the optic nerve, like a larger cup-to-disc ratio,

thinning of the neuroretinal rim, and damage

around the optic disc. Examining these images

by hand require skilled ophthalmologists and

can vary between doctors, which makes it hard

to use on a large scale.

Recent advancements in deep learning have

significantly improved automated glaucoma

detection using fundus images. Convolutional

neural networks (CNNs) have been extensively

used due to their ability to learn discriminative

structural features of the optic disc region.

Ensemble CNN approaches have

demonstrated particularly better performance.

For example, Zhang et al. (2024) reported an

accuracy of 99.53% on the GlaS dataset using

an ensemble CNN model. It highlights the

effectiveness of combining multiple learners to

make more robust and general design. These

results show that ensemble strategies

outperform single-model architectures in

glaucoma detection tasks. Saha et al. (2025) et

al. reported that the EyePACS (Diabetic

Retinopathy) dataset, analyzed using a Deep
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CNN Model, achieved 100% accuracy in

diabetic retinopathy detection .Ahmed et al.

(2024) et al. applied DiaCNN on the ODIR

(Multi-Disease Classification) dataset,

achieving 100% accuracy in multi-disease

classification .Wang et al. (2024) et al. reported

that the ODIR-5K (Cataract) dataset, analyzed

using the Cataract NetDetect (Fusion Model),

achieved 100% accuracy in cataract

detection .Vidivelli et al. (2025) employed

MobileNet with the Adam optimizer to classify

ocular diseases, including glaucoma, achieving

an accuracy of 89.64%.Kansal et al. (2025)

combined DenseNet201, EfficientNet-B3,

InceptionResNetV2, and BiLSTM for

automated ocular disease classification,

reporting validation accuracies exceeding 98%.

Despite high reported accuracy it is fact that

many glaucoma studies are based on limited

datasets and binary disease labels that do not

fully reflect real world clinical decision-making.

The JUSTified Referral in AI for Glaucoma

Screening (JustRAIGS) Challenge addresses

this limitation by framing glaucoma detection

as a clinically meaningful referral task—

classifying fundus images into referable and

non-referable glaucoma. This formula better

aligns with real-world screening workflows,

where the basic aim is to identify patients who

require further expert evaluation rather than

to provide definitive diagnoses. Table2.1

summarizes some related work.

Study Model Task Performance

Zhang etal.

(2024) GlaS Ensemble CNN
Glaucoma

detection
99.53% accuracy

Vidivelli et al.

(2025)

Fundus

images

MobileNet + Adam

Ocular disease

(incl.

glaucoma)

89.64% accuracy

Kansal et al.

(2025)

Fundus

datasets

DenseNet201 +

EfficientNet-B3 +

InceptionResNetV2 +

BiLSTM

Automated

ocular disease

classification

>98% validation

accuracy

JustRAIGS

Challenge
CNN-based models

Referable vs

non-referable

glaucoma

Competitive AUC

and sensitivity

(reported by

participants)

Table 2.1

2.1 StyleGAN Ada 2
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StyleGAN Ada 2 generates realistic images. It

uses a generator and discriminator in a GAN

framework. Its adaptive data augmentation

(ADA) helps in improving training stability,

especially on small datasets. The generator uses

mapping layers and style-modulated

convolution layers to control image features at

different scales. Generative Adversarial

Networks (GANs) have become a very popular

image generating paradigm. Figure 2.2 shows

the architecture of StyleGAN Ada 2

Figure 2.2
2.2 EfficientNet-B3
EfficientNet-B3is a convolutional neural

network that achieves high accuracy while

remaining computationally efficient. It uses a

compound scaling method that uniformly

scales the network’s depth, width, and input

resolution, allowing it to extract rich features

without unnecessary parameters. The

architecture is built from MBConv (mobile

inverted bottleneck convolution) blocks, which

combine depth wise convolutions and squeeze-

and-excitation modules for efficient feature

learning. After feature extraction, a global

average pooling layer and a fully connected

classification layer produce the final

predictions. This design makes EfficientNet-B3

ideal for real-time image classification tasks,

balancing performance and resource

requirements effectively. Figure 2 .3shows

basic architecture of EnfficetNet- B3

Figure 2.3
2.3 Swin Transformer Tiny (Swin-Tiny)

Swin Transformer Tiny (Swin-Tiny) is a

lightweight vision transformer designed for

efficient image understanding. It divides the

input image into patch embeddings and

processes them using hierarchical transformer

blocks with shifted window self-attention,

enabling the model to capture both local and

global features effectively. The hierarchical

structure reduces computational cost while

https://portal.issn.org/resource/ISSN/3006-7030
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preserving spatial information, and the final

classification head uses the extracted feature

maps for prediction. Swin-Tiny is particularly

suitable for tasks like image classification,

object detection, and segmentation, offering a

balance of accuracy and efficiency that

complements convolutional neural networks

in ensemble models. Figure 2.4 shows

architecture of Swin Tiny

Figure 2.4

Class imbalance is always a big challenge in

referable glaucoma detection. Images having

referrals are underrepresented in general.

Conventional data augmentation and

oversampling methods provide limited

diversity, and it often leads to overfitting.

Recent studies strongly support the use of

generative adversarial networks (GANs) to

synthesize realistic retinal images for minority

classes. GAN-based augmentation has been

used to make model more robust and

improved sensitivity in glaucoma screening

tasks. Synthetic image quality and diversity are

carefully validated using metrics such as FID

and perceptual similarity.

Meanwhile vision transformer architectures

have demonstrated powerful alternatives to

CNNs for ophthalmic image analysis.

Transformers can model long-range spatial

dependencies and global contextual data,

which are crucial for capturing subtle

glaucomatous changes spread across the optic

nerve head and surrounding retina.

Combining transformer-based models with

CNNs in ensemble design allows exploitation

of complementary feature representations and

give stable model and improved generalization.

Although, existing glaucoma detection

techniques shows effective results for deep

learning, particularly ensemble CNN models,

on public fundus datasets. However, there is a

pressing demand for independent and

reproducible evaluations on standardized

benchmarks such as JustRAIGS that

incorporate equally with clinically relevant

referral decisions. It addresses class imbalance

and integrates modern architectures such as

CNN–transformer ensembles. This study gives

insight leveraging the JustRAIGS dataset to

evaluate an ensemble deep learning approach

along with generative augmentation for robust

referable glaucoma detection.

3. Methodology:
3.1 Data Collection:

Fundus images were taken from the

JustRAIGS Challenge dataset. It is comprised

https://portal.issn.org/resource/ISSN/3006-7030
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of labelled images around 101,442 for

referable and non-referable glaucoma. The

dataset included 3,270 real fundus images for

referable glaucoma and rest non-referable,

anonymized to comply with ethical standards.

3.1.2 Dataset Analysis and Class Imbalance:

Initial analysis revealed class imbalance

between referable and non-referable images as

only 3270 images are referable glaucoma. To

address we generated the realistic images using

StyleGAN2-ADA, ensuring realistic anatomical

representation for underrepresented classes.

3.2 StyleGAN2-ADA Training:

The StyleGAN2-ADA model was trained on an

NVIDIA A100 GPU on Google Colab.

Automatic configuration (cfg=auto) optimized

hyperparameters, and training was scheduled

for 2,500k images (kimg) to achieve sufficient

convergence. Adaptive Discriminator

Augmentation (ADA) was applied to prevent

overfitting, and horizontal flipping (mirror=1)

increased variability. Snapshots were taken

every 10 ticks (snap=10), and metric evaluation

was disabled (metrics=None) to focus on

training efficiency. After training the model 50

thousand synthetic images were generated.

This workflow integrates advanced GAN-based

synthesis, GAN collapse verification, sharpness

analysis, FID evaluation, and SwinIR

enhancement, producing a high-quality,

balanced, and augmented dataset for glaucoma

detection using deep learning models. Figure

3.1 shows workflow of synthetic image

generation.

Figure 3.1
3.2.1 Sharpness Analysis:

A total of 50,000 images were analyzed for

sharpness using the variance of Laplacian

method, which measures edge intensity 4.

3.2.2 GAN Collapse Check:

To ensure the generative model has

maintained diversity and did not suffer from

mode collapse, synthetic images were evaluated

using pixel-difference measures and LPIPS

perceptual similarity metrics. Random visual

inspections were also performed to verify

sample variation. This step confirmed that the

GAN variation; higher values correspond to

sharper images. This analysis ensured that the

dataset had adequate visual clarity, with a wide

distribution of sharpness across the images.

3.2.3 FID Evaluation:

The quality and distribution alignment of

synthetic fundus images were assessed using

Fréchet Inception Distance (FID). Real and

synthetic images were embedded using an

InceptionV3 network, and FID scores were

calculated to evaluate the similarity between

generated and real datasets.

3.2.4 Image Enhancement Using SwinIR:

The SwinIR transformer-based model was

applied for 4× super-resolution and image

enhancement. Each image was normalized,

processed in batches, and edges were

https://portal.issn.org/resource/ISSN/3006-7030
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sharpened using convolutional kernels. This

process improved fine details and preserved

folder structure for downstream analysis.

3.2.5 Preprocessing for Model Training:

Enhanced images were standardized in size and

resolution. Additional preprocessing included

histogram equalization, contrast adjustment,

denoising, and data augmentation (rotation,

flipping, scaling, color jitter) to improve

dataset diversity and reduce overfitting during

neural network training.

3.3 Model Development, Ensemble Learning,

and Evaluation Workflow:

The figure illustrates the end-to-end pipeline

used for developing a robust and interpretable

glaucoma detection system using the

JustRAIGS dataset. The process begins with

dataset preparation, where real fundus images

and GAN-generated samples enhanced via

SwinIR are combined and split into training,

validation, and test sets while preserving class

balance. Two complementary base models—

EfficientNet-B3 and Swin Transformer (Tiny)—

are selected to leverage both convolutional

feature extraction and transformer-based global

context modelling. During model training,

extensive data augmentation and

hyperparameter tuning are applied, and cross-

entropy loss is used for binary classification of

referable versus non-referable glaucoma. The

outputs of both models are integrated using a

soft-voting ensemble strategy, where class

probabilities are averaged to obtain final

predictions. Model performance is evaluated

on an independent test set using multiple

metrics, including accuracy, sensitivity,

specificity, F1-score, and AUC, along with

explainability analysis using Grad-CAM and

uncertainty estimation. Finally, cross-validation

and external dataset testing (where available)

are performed to assess generalization and

robustness, ensuring reliable performance

across unseen fundus images. Figure 3.2 shows

workflow.

Figure 3.2
3.3.1 Dataset Preparation:
The pre-processed and augmented dataset,

including real fundus images and GAN-

generated images enhanced via SwinIR, was

divided into training, validation, and test sets.

Care was taken to maintain class balance

across splits to avoid biased model training.

3.3.2 Base Model Selection:

For the ensemble framework, two

complementary deep learning architectures

were selected to leverage their respective

strengths. The first model, EfficientNet-B3, is a

convolutional neural network (CNN)

optimized for image classification, offering

high efficiency and accuracy in capturing local

features. The second model, Swin Transformer

https://portal.issn.org/resource/ISSN/3006-7030
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(Tiny), is a transformer-based architecture

designed to capture long-range dependencies

and fine-grained spatial information within

images. By combining these architectures, the

ensemble benefits from both precise local

feature extraction and comprehensive global

contextual understanding, enhancing overall

performance in image-based classification tasks.

3.3.3 Model Training:

During model training, several strategies were

employed to improve performance and

generalization. Data augmentation techniques,

including rotation, flipping, scaling, and color

jitter, were applied to the training images to

increase diversity and reduce overfitting.

Hyperparameter tuning was performed using

the validation set to optimize learning rates,

batch sizes, choice of optimizers, and early

stopping criteria. Additionally, cross-entropy

loss was used as the objective function to guide

the binary classification task of distinguishing

referable from non-referable glaucoma,

ensuring robust and accurate predictions.

3.3.4 Ensemble Strategy:

To generate the final predictions, outputs

from EfficientNet-B3 and Swin Transformer

were aggregated using a soft voting approach,

in which the class probabilities from both

models were averaged to determine the final

classification. This strategy was motivated by

the complementary strengths of the two

architectures: the CNN excels at extraction of

local features, while the transformer captures

global contextual information. By combining

their predictions, the ensemble benefits from

enhanced robustness and improved

generalization, leading to more accurate and

reliable classification results.

3.3.5 Model Evaluation:

The performance of the ensemble model was

assessed on an independent test set using

standard evaluation metrics, including

accuracy, sensitivity, specificity, F1-score, and

area under the ROC curve (AUC). To

enhance interpretability, explainability

techniques such as Grad-CAM were applied to

visualize the regions of fundus images that

contributed most to the model’s decisions.

Additionally, uncertainty estimation was

performed by flagging samples with high

prediction uncertainty, providing insight into

model confidence and enabling potential

integration with active learning strategies for

iterative improvement.

3.3.6 Validation of Generalization:

To ensure the reliability and generalizability of

the ensemble model, cross-validation and

testing on an external validation set were

performed, evaluating performance on

previously unseen images. Furthermore, the

model’s robustness was carefully monitored to

address challenges such as class imbalance and

variations introduced by GAN-generated

images, ensuring stable performance across

diverse data conditions.

4. Results:

The proposed framework combined GAN-

based data augmentation with ensemble deep

learning for referable glaucoma detection on

the JustRAIGS dataset. StyleGAN2-ADA was

trained on 3,270 real fundus images and

converged stably within approximately 8 hours

https://portal.issn.org/resource/ISSN/3006-7030
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on an NVIDIA A100 GPU. A total of 50,000

synthetic images were generated to address

class imbalance. Diversity evaluation using

pixel-difference and LPIPS metrics confirmed

the absence of mode collapse, with an average

LPIPS score of 0.387, indicating strong

perceptual variability. The generated images

achieved a Fréchet Inception Distance (FID) of

37.28, which improved to approximately 33

after mild sharpness enhancement, while

Kernel Inception Distance (KID) analysis

yielded a low mean score of 0.0311 ± 0.0039,

demonstrating close alignment with the real

data distribution.

For glaucoma classification, two

complementary architectures—EfficientNet-B3

and Swin Transformer Tiny—were trained

independently on the GAN-augmented fundus

image dataset. EfficientNet-B3 demonstrated

strong local feature extraction capability,

achieving a peak training accuracy of 98.03%,

with consistently high performance across

epochs (training accuracy ranging from

96.85% to 98.03%). The model exhibited

stable convergence, with loss decreasing from

0.0978 to 0.0586, indicating effective

generalization without overfitting. These

results highlight the effectiveness of

EfficientNet-B3 in capturing fine-grained

structural features relevant to glaucoma

screening. Figure 4.1 shows accuracy and

training loss of EfficeintNet-B3 .

Figure 4.1
In parallel, the Swin Transformer Tiny model

effectively captured global structural context

and long-range dependencies across the optic

nerve head region, achieving training

accuracies in the range of 97.40% to 97.73%.

While slightly lower than EfficientNet-B3 in

terms of peak accuracy, the transformer model

contributed complementary contextual

representations critically for robust decision-

making. Figure 4.2 shows Training accuracy of

Swin Tiny.
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Figure 4.2
The proposed ensemble model, utilizing a soft

voting approach, demonstrated strong

performance across both training and

validation datasets. During training, the

ensemble achieved an accuracy of 98.9%, with

an F1-score of 0.86, sensitivity of 0.90,

specificity of 0.98, and an AUC of 0.989,

indicating excellent ability to correctly identify

positive cases while minimizing false positives.

On the validation set, performance remained

high, albeit slightly lower as expected, with an

accuracy of 98.2%, F1-score of 0.83, sensitivity

of 0.87, specificity of 0.97, and an AUC of

0.982. These results reflect the ensemble’s

robustness and generalizability, highlighting its

effectiveness in accurately distinguishing

between classes while maintaining a balanced

trade-off between recall and precision. Figure

4.3 shows results metrices of ensembled model.

Figure 4.3
5. Conclusion:

This study presented an independent analysis

of the JustRAIGS Challenge dataset using a

deep learning ensemble for referable glaucoma

detection from fundus images. By combining

EfficientNet-B3 and Swin Transformer Tiny
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architectures, the proposed ensemble leveraged

complementary local and global feature

representations, resulting in improved

robustness and generalization compared to

individual models. To address the inherent

class imbalance in referable glaucoma

screening, GAN-based data augmentation

using StyleGAN2-ADA was employed and

rigorously validated through diversity,

sharpness, and distributional similarity metrics.

Experimental results demonstrated that the

ensemble model achieved competitive

performance across clinically relevant

evaluation metrics, including AUC, F1-score,

and sensitivity, while maintaining

interpretability through Grad-CAM

visualizations focused on anatomically

meaningful regions. The findings highlight the

effectiveness of integrating ensemble learning

with generative augmentation for automated

glaucoma referral decisions. Overall, this work

underscores the value of publicly available

benchmark datasets such as JustRAIGS for

reproducible research and supports the

potential of AI-assisted systems to enhance

large-scale glaucoma screening, particularly in

resource-limited settings.

6. References:

● D. A. Talib and A. A. Abed, "Real-Time

Deepfake Image Generation Based on

StyleGAN2-ADA," Revue d’Intelligence

Artificielle, vol. 37, no. 2, pp. 1–12, 2023,

doi:10.18280/ria.370216.

● S. Asiri, S. Almotairi, A. Alshammari, and

W. Alyoubi, "A hybrid deep learning

model for multi-disease detection in

retinal images," Scientific Reports, vol. 14,

Art. no. 75867, 2024.

● T. Nguyen, M. Hoang, and Y. Lee, "Multi-

label retinal disease classification using

uncertainty-aware vision transformers,"

arXiv preprint, 2024.

● P. A. Keane, J. Yim, and J. De Fauw,

"Foundation models in ophthalmology:

Opportunities and challenges," Current

Opinion in Ophthalmology, vol. 36, no. 1,

pp. 65–73, 2025.

● S. Saha et al., "Deep CNN model for

diabetic retinopathy detection," Scientific

Reports, 2025.

● X. Zhang et al., "Ensemble CNN model for

glaucoma detection," ScienceDirect, 2024.

● J. Liu et al., "Scale-adaptive ResNet50 for

age-related macular degeneration

detection," PMC, 2023.

● Z. Ahmed et al., "DiaCNN for multi-

disease classification in ophthalmology,"

ResearchGate, 2024.

● Y. Wang et al., "CataractNetDetect: A

fusion model for cataract detection using

ODIR-5K dataset," Springer, 2024.

● S. Motamed, P. Rogalla, and F. Khalvati,

"Data augmentation using Generative

Adversarial Networks (GANs) for GAN-

based detection of Pneumonia and

COVID-19 in chest X-ray images," Inform.

Med. Unlocked, vol. 27, p. 100779, 2021.

● I. Goodfellow et al., "Generative

adversarial nets," in Advances in Neural

Information Processing Systems, Montreal,

QC, Canada, 2014, pp. 2672–2680.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com |Zaib - 2026 | Page 202

● H. Navidan, P. F. Moshiri, M. Nabati, R.

Shahbazian, S. A. Ghorashi, V. Shah-

Mansouri, and D. Windridge, "Generative

Adversarial Networks (GANs) in

networking: A comprehensive survey and

evaluation," Comput. Netw., vol. 194, p.

108149, 2021.

● A. Creswell, T. White, V. Dumoulin, K.

Arulkumaran, B. Sengupta, and A. A.

Bharath, "Generative Adversarial

Networks: An Overview," IEEE Signal

Process. Mag., vol. 35, pp. 53–65, 2018.

● M. Kim, F. Liu, A. Jain, and X. Liu,

"DCFace: Synthetic Face Generation with

Dual Condition Diffusion Model," arXiv,

2023.

● Y. Peng, C. Zhao, H. Xie, T. Fukusato,

and K. Miyata, "DiffFaceSketch: High-

Fidelity Face Image Synthesis with Sketch-

Guided Latent Diffusion Model," arXiv,

2023.

● Afshar, M. Z., & Shah, M. H. (2025).

Leveraging Porter's diamond model:

Public sector insights. The Critical Review of

Social Sciences Studies, 3(2), 2255-2271.

● Noor, S. R., & Alim, I. (2023).

Blockchain-Integrated ERP Platforms for

Ensuring Security in US Financial Supply

Chains. Journal of Business Insight and

Innovation, 2(2), 107-119.

● Shiva, T. A., Ireen, N., & Islam, M. S.

(2024). Optimizing Early Intervention

Strategies for Neurodiverse Children

(ASD): Reducing Long-Term Public

Healthcare Costs through Parent-

Mediated Training. Apex Journal of Social

Sciences, 3(1), 30-52.

● Hasan, M. A., Mazumder, M. T. R.,

Motari, M. C., Shourov, M. S. H., &

Sarkar, M. (2025). AI-Powered Fraud

Detection: Strengthening Risk Monitoring

with Business Intelligence in US Financial

Institutions. Journal of International

Accounting and Financial Management, 2(2),

162-176.

● A. Szeliga, A Comparative Study of Deep

Generative Models for Image Generation,

Master’s Thesis, Hochschule Hannover,

Hannover, Germany, 2023.

● H. Radford, L. Metz, and S. Chintala,

"Unsupervised Representation Learning

with Deep Convolutional Generative

Adversarial Networks," arXiv, 2015.

● M. Ehrhart, B. Resch, C. Havas, and D.

Niederseer, "A Conditional GAN for

Generating Time Series Data for Stress

Detection in Wearable Physiological

Sensor Data," Sensors, vol. 22, p. 5969,

2022.

● X. Chen, Y. Duan, R. Houthooft, J.

Schulman, I. Sutskever, and P. Abbeel,

"InfoGAN: Interpretable Representation

Learning by Information Maximizing

Generative Adversarial Nets," in NIPS’16:

30th International Conference on Neural

Information Processing Systems, Barcelona,

Spain, 2016, pp. 2180–2188.

● T. Karras, S. Laine, and T. Aila, "A Style-

Based Generator Architecture for

Generative Adversarial Networks," in Proc.

2019 IEEE/CVF Conf. Computer Vision and

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com |Zaib - 2026 | Page 203

Pattern Recognition (CVPR), Long Beach,

CA, USA, 2019, pp. 4396–4405.

● Hasan, M. A., Mazumder, M. T. R.,

Motari, M. C., Shourov, M. S. H., &

Sarkar, M. (2025). The Impact of AI-

Integrated Dashboards and Automation

on CRM Workflow Optimization in US

Small and Mid-Sized Brokerage

Firms. Journal of Theoretical and Applied

Econometrics, 2(1), 25-56.

● J. De Fauw, J. R. Ledsam, B. Romera-

Paredes, et al., "Clinically applicable deep

learning for diagnosis and referral in

retinal disease," Nat. Med., vol. 24, pp.

1342–1350, 2018.

● M. A. Chia, F. Antaki, Y. Zhou, et al.,

"Foundation models in ophthalmology,"

Br. J. Ophthalmol., vol. 108, pp. 1341–1348,

2024, doi: 10.1136/bjo-2024-325459.

● Abbas, S. Q., & Khalil, M. N. (2025).

Combined Geophysical and Geochemical

Evaluation of the Kirthar Fold Belt for

Mineral and Hydrocarbon

Resources. Journal of Engineering and

Computational Intelligence Review, 3(2), 115-

128.

● R. Bommasani, D. A. Hudson, E. Adeli, et

al., "On the opportunities and risks of

foundation models," arXiv [cs.LG], 2021.

● A. Ross, K. McGrow, D. Zhi, et al.,

"Foundation models, generative AI, and

large language models: essentials for

nursing," Comput. Inform. Nurs., vol. 42, pp.

377–387, 2024.

● T. B. Brown, B. Mann, N. Ryder, et al.,

"Language models are few-shot learners,"

arXiv [cs.CL], 2020.

● J. Achiam, S. Adler, et al., "GPT-4

Technical Report," arXiv [cs.CL], 2023.

● OpenAI, "Models: GPT-4 Turbo and GPT-

4," 2024. [Online]. Available:

https://platform.openai.com/docs/model

s/gpt-4-turbo-and-gpt-4

● Azam, B., & Mehar, S. (2025).

Performance Evaluation of Battery

Management Systems in Lithium-Ion

Battery-Powered Electric Vehicles. Journal

of Engineering and Computational Intelligence

Review, 3(2), 81-95.

● K. Martineau, "What is retrieval-

augmented generation?" IBM Research

Blog, 2023. [Online]. Available:

https://research.ibm.com/blog/retrieval-

augmented-generation-RAG

● OpenAI, "Prompt Engineering," 2024.

[Online]. Available:

https://platform.openai.com/docs/guides

/prompt-engineering/six-strategies-for-

getting-better-results

● VertexAI, "Tune models overview,"

Google Cloud, 2024. [Online]. Available:

https://cloud.google.com/vertex-

ai/generative-ai/docs/models/tune-models

● Y. Gao, Y. Xiong, X. Gao, et al., "Retrieval-

augmented generation for large language

models: a survey," arXiv [cs.CL], 2023.

● T. F. Tan, K. Elangovan, L. Jin, et al.,

"Fine-tuning Large Language Model (LLM)

Artificial Intelligence Chatbots in

Ophthalmology and LLM-based

https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
https://research.ibm.com/blog/retrieval-augmented-generation-RAG
https://research.ibm.com/blog/retrieval-augmented-generation-RAG
https://platform.openai.com/docs/guides/prompt-engineering/six-strategies-for-getting-better-results
https://platform.openai.com/docs/guides/prompt-engineering/six-strategies-for-getting-better-results
https://platform.openai.com/docs/guides/prompt-engineering/six-strategies-for-getting-better-results
https://cloud.google.com/vertex-ai/generative-ai/docs/models/tune-models
https://cloud.google.com/vertex-ai/generative-ai/docs/models/tune-models
https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com |Zaib - 2026 | Page 204

evaluation using GPT-4," arXiv [cs.AI],

2024.

● TensorFlow, "Transfer learning & fine-

tuning," [Online]. Available:

https://www.tensorflow.org/guide/keras/

transfer_learning

● E. Herrera-Berg, "StyleGAN3-CLIP-

Notebooks," 2022. [Online]. Available:

https://github.com/ouhenio/StyleGAN3-

CLIP-notebooks

S. Xia, Y. Zhang, Y. Yang, J. H. Xue, B. Zhou,

and M. H. Yang, "GAN Inversion: A

Survey," IEEE Trans. Pattern Anal. Mach.

Intell., vol. 45, pp. 3121–3138, 2023.

https://www.tensorflow.org/guide/keras/transfer_learning
https://www.tensorflow.org/guide/keras/transfer_learning
https://github.com/ouhenio/StyleGAN3-CLIP-notebooks
https://github.com/ouhenio/StyleGAN3-CLIP-notebooks
https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

