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Abstract

Fundus imaging is a noninvasive method for screening retina and is widely used
for diagnosis of ophthalmological diseases. For early detection of glaucoma,
clinically relevant structural changes in the optic nerve head, neuroretinal rim,
and peripapillary region can be visualized in fundus images. In this study, we
investigate automated referable glaucoma detection using deep learning ensemble
model trained on the publicly available JustRAIGS Challenge dataset. We have
proposed an independent ensemble framework combining convolutional and
transformer-based  architectures,  specifically  EfficientNet:B3  and  Swin
Transformer Tiny, to leverage complementary feature representations. To address
class imbalance between referable and nonwreferable cases, generative adversarial
network—based data augmentation was employed. The proposed ensemble
achieved competitive performance across clinically relevant evaluation metrics,
demonstrating its potential for robust and scalable glaucoma screening.
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Glaucoma is one of the leading causes of
irreversible blindness worldwide and early
detection is crucial for preventing longterm

reliable

often require expert assessment,

vision loss. However, screening
methods
specialized equipment, and extensive clinical
resources that are limited particularly in low-
resource settings. In recent years, deep learning
methods emerged as a powerful tool for
automating the analysis of ophthalmic images,
offering the potential to support large-scale
glaucoma screening through fast, accurate, and
reproducible predictions.

The JUSTified Referral in Al for Glaucoma
Screening (JustRAIGS) Challenge provides a
standardized  benchmark for evaluating
machine learning models on the task of
referable vs. non-referable glaucoma detection
using fundus images. The dataset aims to
bridge the gap between algorithm development
and realworld deployment by focusing ‘on
clinically meaningful referral decisions rather
than simple disease classification.

This work is an independent analysis of the
JustRAIGS dataset using a deep learning
ensemble model of EfficientNet-B3 and Swin
Transformer Tiny architectures. The objective

of this

combining convolutional and

study is to investigate whether
transformer-
based vision models can improve robustness,
sensitivity, and generalization in glaucoma
detection. Additionally, active learning and
data augmentation strategies were
incorporated to enhance model performance
on limited and imbalanced data that is a

common challenge in ophthalmic datasets.

The findings of this analysis provide good
insight into the effectiveness of ensemble deep
learning methods for automation of glaucoma
referral decisions, and it also gives us foresight
on the potential of Al-assisted tools to support
early diagnosis in clinical and community-
based screening environments.

2. Literature Review

Glaucoma is one of the main causes of
permanent vision loss around the globe. Early
detection is critical to prevent further damage.
Fundus images are commonly wused for
screening because it allows doctors see changes
in the optic nerve, like a larger cup-to-disc ratio,
thinning of the neuroretinal rim, and damage
around the optic disc. Examining these images
by hand require skilled ophthalmologists and
can vary between doctors, which makes it hard
to use on a large scale.

Recent advancements in deep learning have
significantly improved automated glaucoma
detection using fundus images. Convolutional
neural networks (CNNs) have been extensively
used due to their ability to learn discriminative
structural features of the optic disc region.

CNN

demonstrated particularly better performance.

Ensemble approaches have
For example, Zhang et al. (2024) reported an
accuracy of 99.53% on the GlaS dataset using
an ensemble CNN model. It highlights the
effectiveness of combining multiple learners to
make more robust and general design. These
show that ensemble

results strategies

outperform  single-model architectures in
glaucoma detection tasks. Saha et al. (2025) et
al. reported that the EyePACS (Diabetic

Retinopathy) dataset, analyzed using a Deep
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CNN Model, achieved 100% accuracy in
diabetic retinopathy detection .Ahmed et al.
(2024) et al. applied DiaCNN on the ODIR
(Multi-Disease

achieving 100%
classification .Wang et al. (2024) et al. reported
that the ODIR-5K (Cataract) dataset, analyzed
using the Cataract NetDetect (Fusion Model),
100%
detection .Vidivelli et al. (2025) employed
MobileNet with the Adam optimizer to classify

Classification) dataset,

accuracy in multi-disease

achieved accuracy in  cataract

ocular diseases, including glaucoma, achieving

an accuracy of 89.64%.Kansal et al. (2025)

Despite high reported accuracy it is fact that
many glaucoma studies are based on limited
datasets and binary disease labels that do not
fully reflect real world clinical decision-making.
The JUSTified Referral in Al for Glaucoma
Screening (JustRAIGS) Challenge addresses
this limitation by framing glaucoma detection
as a clinically meaningful referral task—
classifying fundus images into referable and
non-referable glaucoma. This formula better
aligns with realworld screening workflows,
where the basic aim is to identify patients who

require further expert evaluation rather than

combined DenseNet201, EfficientNet-B3, to provide definitive diagnoses. Table2.1
InceptionResNetV2, and BiLSTM  for  summarizes some related work.
automated ocular disease classification,
reporting validation accuracies exceeding 98%.
Study Model Task Performance
Zhang etal.
Glaucoma
(2024) GlaS  Ensemble CNN : 99.53% accuracy
detection
Vidivelli et al.
(2025) Ocular disease
Fundus MobileNet + Adam (incl. 89.64% accuracy
images glaucoma)
Kansal et al. DenseNet201 +
Automated
(2025) EfficientNet-B3 + _ >98% validation
ocular disease
Fundus InceptionResNetV2 + o accuracy
classification
datasets BiLSTM
C titive AUC
JusRAIGS Referable vs o;npe 1_ I_Ve_
t t
o CNN-based models non-referable oo Iy
Challenge (reported by
glaucoma o
participants)
Table 2.1
2.1 StyleGAN Ada 2
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StyleGAN Ada 2 generates realistic images. It
uses a generator and discriminator in a GAN
framework. Its adaptive data augmentation
(ADA) helps in improving training stability,

especially on small datasets. The generator uses

convolution layers to control image features at

different scales. Generative Adversarial

Networks (GANs) have become a very popular
image generating paradigm. Figure 2.2 shows

the architecture of StyleGAN Ada 2

mapping  layers and  stylemodulated
| MNoise Vector I
“ o
Figure 2.2
2.2 EfficientNet-B3 combine depth wise convolutions and squeeze-
EfficientNet-B3is a convolutional neural and-excitation modules for efficient feature

network that achieves high accuracy while
remaining computationally efficient. It uses a
compound scaling method that uniformly
scales the network’s depth, width, and input
resolution, allowing it to extract rich features

The

architecture is built from MBConv (mobile

without  unnecessary  parameters.

inverted bottleneck convolution) blocks, which

learning. After feature extraction, a global
average pooling layer and a fully connected

the
predictions. This design makes EfficientNet-B3

classification  layer  produce final

ideal for realtime image classification tasks,

balancing  performance  and  resource

requirements effectively. Figure 2 .3shows
basic architecture of EnfficetNet- B3
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2.3 Swin Transformer Tiny (Swin-Tiny) processes them using hierarchical transformer
Swin Transformer Tiny (Swin-Tiny) is a blocks with shifted window self-attention,

lightweight vision transformer designed for
efficient image understanding. It divides the

input image into patch embeddings and

enabling the model to capture both local and
global features effectively. The hierarchical

structure reduces computational cost while
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preserving spatial information, and the final
classification head uses the extracted feature
maps for prediction. Swin-Tiny is particularly
suitable for tasks like image «classification,

object detection, and segmentation, offering a

Hox W x 3 .
l Image L’
|

S Wax 3
Patch Partition

balance of accuracy and efficiency that

complements convolutional neural networks

in ensemble models. Figure 2.4 shows
architecture of Swin Tiny
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Figure 2.4

Class imbalance is always a big challenge in
referable glaucoma detection. Images having
referrals are underrepresented in general.
Conventional  data  augmentation  and

oversampling  methods  provide limited
diversity, and it often leads to overfitting.
Recent studies strongly support the use of
generative adversarial networks (GANs) to
synthesize realistic retinal images for minority
classes. GAN-based augmentation has been
used to make model more robust and
improved sensitivity in glaucoma screening
tasks. Synthetic image quality and diversity are
carefully validated using metrics such as FID
and perceptual similarity.

Meanwhile vision transformer architectures
have demonstrated powerful alternatives to

CNNs  for

Transformers can model longrange spatial

ophthalmic image analysis.

dependencies and global contextual data,

which are crucial for capturing subtle

glaucomatous changes spread across the optic

nerve head and surrounding retina.

Combining transformer-based models with
CNNs in ensemble design allows exploitation
of complementary feature representations and
give stable model and improved generalization.

Although,

techniques shows effective results for deep

existing  glaucoma  detection
learning, particularly ensemble CNN models,
on public fundus datasets. However, there is a
pressing demand for independent and
evaluations on standardized

JustRAIGS  that

incorporate equally with clinically relevant

reproducible
benchmarks such as

referral decisions. It addresses class imbalance

and integrates modern architectures such as
CNN-transformer ensembles. This study gives
insight leveraging the JustRAIGS dataset to
evaluate an ensemble deep learning approach
along with generative augmentation for robust
referable glaucoma detection.

3. Methodology:

3.1 Data Collection:

from the

Fundus taken

JustRAIGS Challenge dataset. It is comprised

images were
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of labelled 101,442 for

referable and non-referable glaucoma. The

images around
dataset included 3,270 real fundus images for
referable glaucoma and rest non-referable,
anonymized to comply with ethical standards.
3.1.2 Dataset Analysis and Class Imbalance:
Initial analysis revealed class imbalance
between referable and non-referable images as
only 3270 images are referable glaucoma. To
address we generated the realistic images using
StyleGAN2-ADA, ensuring realistic anatomical
representation for underrepresented classes.
3.2 StyleGAN2-ADA Training:

The StyleGAN2-ADA model was trained on an
NVIDIA A100 GPU on Google Colab.

Automatic configuration (cfg=auto) optimized

hyperparameters, and training was scheduled

GAN-Based
¢ Image

A(_heck GAN

Synthesis

Sharpness
Analysis

Collapse .
| Yerity for Training g Assess Image
Stability Clarity

for 2,500k images (kimg) to achieve sufficient

convergence. Adaptive Discriminator
Augmentation (ADA) was applied to prevent
overfitting, and horizontal flipping (mirror=1)
increased variability. Snapshots were taken
every 10 ticks (snap=10), and metric evaluation
was disabled (metrics=None) to focus on
training efficiency. After training the model 50
thousand synthetic images were generated.
This workflow integrates advanced GAN-based
synthesis, GAN collapse verification, sharpness
and  SwinlR

high-quality,

analysis, FID  evaluation,

enhancement, producing a
balanced, and augmented dataset for glaucoma
detection using deep learning models. Figure

3.1 shows

generation.

/ol FD ‘
Evaluatio
Measure Dataset
Quality

workflow of synthetic image

High-Quality &
“@ Augmented Dataset for
Glaucoma Detection

For Deep Learning Models

Figure 3.1

3.2.1 Sharpness Analysis:

A total of 50,000 images were analyzed for
sharpness using the variance of Laplacian
method, which measures edge intensity 4.

3.2.2 GAN Collapse Check:

To ensure the generative model has
maintained diversity and did not suffer from
mode collapse, synthetic images were evaluated
using pixel-difference measures and LPIPS
perceptual similarity metrics. Random visual
inspections were also performed to verify
sample variation. This step confirmed that the
GAN variation; higher values correspond to

sharper images. This analysis ensured that the

dataset had adequate visual clarity, with a wide
distribution of sharpness across the images.
3.2.3 FID Evaluation:

The quality and distribution alignment of
synthetic fundus images were assessed using
Fréchet Inception Distance (FID). Real and
synthetic images were embedded using an
InceptionV3 network, and FID scores were
calculated to evaluate the similarity between
generated and real datasets.

3.2.4 Image Enhancement Using SwinIR:

The SwinlR transformer-based model was
applied for 4x superresolution and image
enhancement. Each image was normalized,
in batches, and edges

processed were

https://sesjournal.com

| Zaib - 2026 |

Page 196


https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

Volume 4, Issue 2, 2026

sharpened using convolutional kernels. This
process improved fine details and preserved
folder structure for downstream analysis.

3.2.5 Preprocessing for Model Training:

Enhanced images were standardized in size and
resolution. Additional preprocessing included
histogram equalization, contrast adjustment,
denoising, and data augmentation (rotation,
flipping,
dataset diversity and reduce overfitting during

scaling, color jitter) to improve
neural network training.

3.3 Model Development, Ensemble Learning,
and Evaluation Workflow:

The figure illustrates the end-to-end pipeline
used for developing a robust and interpretable
glaucoma  detection using  the

JustRAIGS dataset. The process begins with

dataset preparation, where real fundus images

system

and GAN-generated samples enhanced via
SwinlR are combined and split into training,
validation, and test sets while preserving class

balance. Two complementary base models—

Dataset Preparation " Dtaset Praparation. | Base Model Selenmn Model Training |
HETn Efficientiat-B3 - ‘-'ﬂ_@ ;
@ CL&E # n];;m_’
Real & GAN- Swin Transformer | | | navy sgmentation

(Tiny)

4/ Generated

Fusidus Images
31 il = Salect Complementary

LB 1Erhanes oy it}
m- | Models

Real & GAN-Generated
Fundug Images
(Ershasnded by Swini)

& Hyperparamater Turing

Loss Function

Eruss-Eni-rEEg-'

EfficientNet-B3 and Swin Transformer (Tiny)—
are selected to leverage both convolutional
feature extraction and transformer-based global
context modelling. During model training,
extensive data augmentation and
hyperparameter tuning are applied, and cross-
entropy loss is used for binary classification of
referable versus non-referable glaucoma. The
outputs of both models are integrated using a
softvoting ensemble strategy, where class
probabilities are averaged to obtain final
predictions. Model performance is evaluated
on an independent test set using multiple
including sensitivity,

metrics, accuracy,

specificity, Fl-score, and AUC, along with
explainability analysis using Grad-CAM and
uncertainty estimation. Finally, cross-validation
and external dataset testing (where available)
are performed to assess generalization and
reliable performance

robustness, ensuring

across unseen fundus images. Figure 3.2 shows

workflow.
| Ensemble Strategy % | @Vﬂldaﬂm
@-‘@4% * x Generalization
Evaluate
« Codmitane Predictions using Performance = Cross-validation
Soft Voting Metrics = External Dataset Tosting
[ avsilaibbe)
CNN &
m::bk o Srferatie | Transformer
Swrengths

| Referable Glaucoma Detection Using the JustRAIGS Dataset

Figure 3.2

3.3.1 Dataset Preparation:
The preprocessed and augmented dataset,

and GAN-

generated images enhanced via SwinlR, was

including real fundus images
divided into training, validation, and test sets.
Care was taken to maintain class balance
across splits to avoid biased model training.
3.3.2 Base Model Selection:

For the ensemble framework, two
complementary deep learning architectures
were selected to leverage their respective
strengths. The first model, EfficientNet-B3, is a
(CNN)

optimized for image classification, offering

convolutional  neural network
high efficiency and accuracy in capturing local

features. The second model, Swin Transformer
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(Tiny), is a transformer-based architecture
designed to capture longrange dependencies
and fine-grained spatial information within
images. By combining these architectures, the
ensemble benefits from both precise local
feature extraction and comprehensive global
contextual understanding, enhancing overall
performance in image-based classification tasks.
3.3.3 Model Training:

During model training, several strategies were
employed to improve performance and
generalization. Data augmentation techniques,
including rotation, flipping, scaling, and color
jitter, were applied to the training images to
increase diversity and reduce overfitting.
Hyperparameter tuning was performed using
the validation set to optimize learning rates,
batch sizes, choice of optimizers, and early
stopping criteria. Additionally, cross-entropy
loss was used as the objective function to guide
the binary classification task of distinguishing
from  non-referable

referable glaucoma,

ensuring robust and accurate predictions.

3.3.4 Ensemble Strategy:

To generate the final predictions, outputs
from EfficientNet-B3 and Swin Transformer
were aggregated using a soft voting approach,
in which the class probabilities from both
models were averaged to determine the final
classification. This strategy was motivated by
the complementary strengths of the two
architectures: the CNN excels at extraction of
local features, while the transformer captures
global contextual information. By combining

their predictions, the ensemble benefits from

enhanced  robustness and improved
generalization, leading to more accurate and
reliable classification results.

3.3.5 Model Evaluation:

The performance of the ensemble model was
assessed on an independent test set using
standard  evaluation

metrics,  including

accuracy, sensitivity, specificity, Fl-score, and
ROC curve (AUC). To
interpretability,

area under the
enhance explainability
techniques such as Grad-CAM were applied to
visualize the regions of fundus images that
contributed most to the model’s decisions.

Additionally,
performed by flagging samples with high

uncertainty estimation  was
prediction uncertainty, providing insight into
model confidence and enabling potential
integration with active learning strategies for
iterative improvement.

3.3.6 Validation of Generalization:

To ensure the reliability and generalizability of
the ensemble model, crosswvalidation and
testing on an external validation set were
performed, evaluating performance on
previously unseen images. Furthermore, the
model’s robustness was carefully monitored to
address challenges such as class imbalance and

GAN-generated

images, ensuring stable performance across

variations  introduced by

diverse data conditions.

4. Results:

The proposed framework combined GAN-
based data augmentation with ensemble deep
learning for referable glaucoma detection on
the JustRAIGS dataset. StyleGAN2-ADA was
trained on 3,270 real fundus images and

converged stably within approximately 8 hours
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on an NVIDIA A100 GPU. A total of 50,000
synthetic images were generated to address
class imbalance. Diversity evaluation using
pixel-difference and LPIPS metrics confirmed
the absence of mode collapse, with an average
LPIPS score of 0.387,

perceptual variability. The generated images

indicating strong
achieved a Fréchet Inception Distance (FID) of
37.28, which improved to approximately 33
mild while
Kernel Inception Distance (KID) analysis
yielded a low mean score of 0.0311 + 0.0039,

demonstrating close alignment with the real

after sharpness enhancement,

data distribution.
For glaucoma classification, two

complementary architectures—EfficientNet-B3

and Swin Transformer Tiny—were trained
independently on the GAN-augmented fundus
image dataset. EfficientNet-B3 demonstrated
strong local feature extraction capability,
achieving a peak training accuracy of 98.03%,
with consistently high performance across
epochs (training accuracy ranging from

96.85% to 98.03%). The model exhibited

stable convergence, with loss decreasing from

0.0978 to 0.0586, indicating effective
generalization ~ without overfitting. These
results  highlight the effectiveness  of

EfficientNet-B3 in

structural

capturing  fine-grained

features relevant to glaucoma
screening. Figure 4.1 shows accuracy and

training loss of EfficeintNet-B3 .

EfficientNet-B3 Training Performance

1.2 4

1.0

0.8

0.6

Value

0.4

0.2 4

0.0

™
Training Accuracy Range (%)

Training Loss Start

Training Loss End

Figure 4.1

In parallel, the Swin Transformer Tiny model
effectively captured global structural context

and longrange dependencies across the optic

terms of peak accuracy, the transformer model

contributed complementary contextual

representations critically for robust decision-

nerve head region, achieving training  making. Figure 4.2 shows Training accuracy of
accuracies in the range of 97.40% to 97.73%. Swin Tiny.

While slightly lower than EfficientNet-B3 in
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Swin Transformer Tiny Training Performance

Training Accuracy Range (%)

Training Loss Start

Training Loss End

Figure 4.2

The proposed ensemble model, utilizing a soft
demonstrated

both
During

voting  approach, strong

performance  across training and

validation datasets. training, the
ensemble achieved an accuracy of 98.9%, with
an Flscore of 0.86, sensitivity of 0.90,
specificity of 0.98, and an AUC of 0.989,
indicating excellent ability to correctly identify
positive cases while minimizing false positives.

On the validation set, performance remained

high, albeit slightly lower as expected, with an
accuracy of 98.2%, Fl-score of 0.83, sensitivity
of 0.87, specificity of 0.97, and an AUC of
0.982. These results reflect the ensemble’s
robustness and generalizability, highlighting its
effectiveness in  accurately distinguishing
between classes while maintaining a balanced
trade-off between recall and precision. Figure

4.3 shows results metrices of ensembled model.

Ensemble Model Performance Metrics (Soft Voting)

100 - o Training
e validation

80

60 1

Percentage (%)

20

Accuracy

Sensitivity
Metrics

Specificity

Figure 4.3

5. Conclusion:

This study presented an independent analysis

of the JustRAIGS Challenge dataset using a

deep learning ensemble for referable glaucoma
detection from fundus images. By combining
EfficientNet-B3 and Swin Transformer Tiny
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architectures, the proposed ensemble leveraged
complementary local and global feature
representations,  resulting in  improved
robustness and generalization compared to
individual models. To address the inherent
class imbalance in referable glaucoma
screening, GAN-based data augmentation
using StyleGAN2-ADA was employed and
rigorously  validated  through  diversity,
sharpness, and distributional similarity metrics.
Experimental results demonstrated that the
ensemble  model achieved  competitive
performance  across  clinically  relevant
evaluation metrics, including AUC, Fl-score,
and sensitivity, while maintaining
Grad-CAM

visualizations  focused on  anatomically

interpretability through

meaningful regions. The findings highlight the
effectiveness of integrating ensemble learning
with generative augmentation for automated
glaucoma referral decisions. Overall, this work
underscores the value of publicly available
benchmark datasets such as JustRAIGS for
reproducible research and supports the
potential of Al-assisted systems to enhance
large-scale glaucoma screening, particularly in
resource-limited settings.
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