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Abstract
The escalating complexity of modern engineering systems, characterized by high
dimensionality, stochastic dynamics, and non-linear interdependencies, has
rendered traditional model-based control strategies insufficient. Static models,
typically derived from ideal design parameters (CAD/CAE data), fail to account
for the continuous temporal degradation, sensor drift, component fatigue, and
environmental variance inherent in physical assets operational in the field. This
research investigates the architectural and functional integration of Digital Twins
(DT) with Artificial Intelligence (AI) to establish a paradigm of active, closed-loop
intelligence. By conceptualizing the Digital Twin not merely as a passive replica or
visualization tool but as a semantic mediator for bidirectional synchronization,
this study demonstrates how AI models can leverage real-time high-fidelity state
estimation to drive autonomous optimization. The proposed framework facilitates
a fundamental transition from reactive maintenance and static control to
predictive, self-optimizing system behaviors that adapt to the evolving physics of
the machinery. The findings indicate that Digital Twin–driven AI significantly
enhances automation capability levels and optimization responsiveness compared
to conventional control methods, offering a robust, theoretically grounded pathway
for the management of next-generation Cyber-Physical Systems (CPS)..
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1. Introduction

The engineering landscape is undergoing a

fundamental transformation driven by the

convergence of operational technology (OT)

and information technology (IT), a shift often

categorized under the umbrella of Industry 4.0

and the emerging Industry 5.0 paradigms.

While Industry 4.0 focused heavily on

interconnectivity, data logging, and smart

automation through Cyber-Physical Systems

(CPS), Industry 5.0 emphasizes the synergy

between humans and autonomous machines,

requiring systems that are not only efficient

but also resilient, explainable, and adaptive to

unforeseen contexts. Modern complex

engineering systems—ranging from smart

manufacturing grids and distributed energy

resources to autonomous aerospace vehicles—

exhibit a scale of interconnectivity and

uncertainty that challenges the fundamental

limits of classical control theory [1]. In these

environments, system behaviors are often

emergent, arising from the non-linear

interactions of thousands of subsystems,

making them difficult to predict using linear

differential equations or static look-up tables

alone. For example, in a renewable energy grid,

the stochastic nature of wind generation

coupled with fluctuating consumer demand

creates a control problem where the optimal

operating point shifts millisecond by

millisecond, defying static programmatic logic.

Traditional optimization approaches, such as

static Model Predictive Control (MPC) or rule-

based logic (e.g., PID controllers), rely on fixed

parameters identified during the

commissioning phase (System Identification).

These models operate on the assumption that

the system's physical properties—mass, friction

coefficients, thermal conductivity, and

electrical resistance—remain constant over time.

However, in reality, these parameters inevitably

drift due to mechanical wear, material fatigue,

environmental thermal shifts, and unmodeled

dynamics [2]. This widening divergence

between the "as-designed" model and the "as-

operated" physical asset creates a significant

"reality gap." Consequently, control actions

based on static models become increasingly

sub-optimal, leading to energy waste, safety

risks, and increased latency in decision-making

as operators are forced to intervene manually

to correct deviations. For instance, a PID

controller tuned for a new robotic arm may

induce dangerous oscillations in an arm with

five years of joint wear, as the controller lacks

the "awareness" of the changed physical state

(e.g., increased backlash or friction).

To address these limitations, the Digital Twin

(DT) has emerged as a critical enabler. Defined

as a virtual representation of a physical asset,

process, or system, the DT provides a dynamic

isomorphism that mirrors the lifecycle of its

physical counterpart [3]. Unlike a standard

simulation, which is a static snapshot used for

design, a DT is a living model that evolves

through continuous data ingestion. However, a

DT alone is primarily an observational tool; it

can diagnose the present state but cannot

inherently alter it. To achieve high-level

automation and optimization, the descriptive

and diagnostic capacity of the DT must be

coupled with the cognitive, predictive, and
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decision-making capabilities of Artificial

Intelligence (AI) [4].

This research conceptualizes and evaluates

Digital Twin–driven AI models as the

foundation for autonomous engineering

systems. The distinction between "automated"

and "autonomous" is crucial here: automated

systems follow pre-programmed rules (if X then

Y), while autonomous systems govern

themselves, making decisions in novel

situations to satisfy high-level goals (optimize Y

subject to Z) even when X changes.

1.1 Research Questions

To rigorously investigate the integration of

these technologies, this study addresses the

following four research questions:

● RQ1. How can Digital Twins be

operationalized as active intelligence mediators

rather than passive virtual replicas in complex

engineering systems?

● RQ2. In what ways do AI models

integrated with Digital Twins enable

continuous automation and optimization

under dynamic and uncertain operating

conditions?

● RQ3. How does closed-loop

interaction between physical systems, Digital

Twins, and AI models influence system

adaptability and performance?

● RQ4. What design and evaluation

dimensions are critical for assessing the

effectiveness of Digital Twin–driven AI in

complex engineering environments?

The objective is to define a closed-loop

architecture where the DT serves as the

training and validation ground for AI agents,

which in turn execute optimization and

control actions upon the physical system.

2. Research Contributions
This manuscript advances the state of the art

through the following contributions, directly

mapping to the outlined research questions:

● Conceptual Framing of Active

Intelligence (Addressing RQ1): The research

redefines the role of the Digital Twin from a

passive repository of state data to an active

intelligence mediator. In this view, the DT acts

as a semantic bridge that synchronizes physical

reality with digital cognition, filtering sensor

noise and reconstructing unobservable states

(Virtual Sensing) to provide the AI with a

"complete" view of the world. This framing

moves beyond "monitoring" to "mediation,"

positioning the Twin as the authoritative

source of truth for the AI controller.

● Intelligence-in-the-Loop Optimization

(Addressing RQ2): A closed-loop framework is

proposed where AI models utilize the DT for

low-risk exploration and reinforcement

learning. This enables the deployment of

optimization strategies—such as aggressive yield

maximization or novel path planning—that are

unsafe or impractical to test on physical

hardware due to the risk of damage or

catastrophic failure. It introduces the concept

of "safe exploration" via digital proxies,

allowing the AI to fail thousands of times

virtually to succeed once physically.

● Adaptive System Insights (Addressing

RQ3): The study provides empirical-theoretical

evidence regarding the superiority of co-

evolving DT-AI systems over static baselines.

Specifically, it highlights the system's ability to
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handle dynamic constraints and non-linear

disturbances by continuously updating the

internal physics model used by the AI, thereby

solving the problem of model degradation. It

demonstrates that adaptability is a function of

the synchronization frequency between the

Twin and the Asset.

3. Related Work

Recent literature reflects a surge in Digital

Twin applications, yet specific gaps remain in

achieving fully autonomous control.

Digital Twin Architectures

Jones et al. [5] and Tao et al. [6] have

established foundational five-dimension DT

architectures (Physical Entity, Virtual Entity,

Services, Data, and Connections). However,

their focus remains largely on data fusion,

protocol interoperability, and visualization,

rather than active control loops. While

semantic modeling of DTs has improved,

allowing for better data interoperability [7], the

integration of these semantic layers with

decision-making algorithms is often treated as

a secondary concern, leaving the "brain" of the

system disconnected from its "body." Existing

architectures often lack the feedback

mechanisms required for the Virtual Entity to

drive changes in the Physical Entity

autonomously, treating the Twin as a

dashboard rather than a controller. Most

implementations stop at "monitoring," failing

to close the loop back to actuation.

AI for Control and Optimization
The application of Deep Reinforcement

Learning (DRL) for industrial control has

gained traction [8], [9]. DRL offers the promise

of learning complex, non-linear control

policies without requiring an explicit

mathematical model. However, training DRL

agents directly on physical systems is rarely

feasible due to sample inefficiency (requiring

millions of interactions) and safety concerns

(random exploration can damage equipment).

Sim-to-Real transfer techniques have been

explored to bridge this gap [10], but these

approaches often lack the continuous

synchronization required to handle system

degradation over time; a policy learned on a

"new" machine simulation may fail on an "old"

physical machine [11]. This "drift" between the

training environment and the deployment

environment is a primary barrier to adoption,

often referred to as the "reality gap" in robotics

and control theory.

Cyber-Physical Systems and Automation

Research in CPS automation has highlighted

the need for self-adaptive systems that can

reconfigure themselves in response to faults

[12]. Current approaches often segregate the

monitoring system (DT) from the control

system (AI), treating them as separate silos [13].

Recent surveys in IEEE Transactions on

Industrial Informatics suggest that the

convergence of these fields is nascent,

specifically regarding the "co-evolution" where

the DT updates the AI's internal model in real-

time [14], [15]. This study addresses these gaps

by formalizing the feedback mechanisms

between state estimation and autonomous

control, proposing a unified architecture

where the AI and DT evolve in tandem.
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4. Methodology

4.1 Operationalizing Digital Twins as Active

Intelligence Mediators
The proposed methodology conceptualizes the

engineering system not as distinct hardware

and software components, but as a co-evolving

dyad. To answer RQ1, we operationalize the

Digital Twin as an active mediator rather than

a passive replica. In this framework, the

Physical System generates continuous streams

of telemetry (vibration, temperature, pressure,

current). The Digital Twin absorbs this data

not just to archive it, but to maintain a high-

fidelity state representation using physics-based

solving or data-driven surrogates.

Crucially, the AI model does not interact with

the raw physical data alone, which is often

noisy, sparse, or delayed. Instead, it perceives

the system through the synthesized, semantic

lens of the DT. The DT performs data

imputation and noise reduction, offering the

AI a "clean" and "complete" state vector [16].

This process often involves Virtual Sensing,

where the DT estimates unmeasurable

parameters (e.g., internal turbine temperature,

stress concentration at a hidden joint, or

chemical concentration in a sealed reactor)

based on accessible data (e.g., exhaust gas

temperature) using techniques ranging from

Kalman Filters to Neural Estimators (e.g.,

Physics-Informed Neural Networks - PINNs).

This allows the AI to focus on high-level

optimization logic rather than low-level signal

processing. By abstracting the physical

complexity into a standardized digital state

space, the AI can operate with higher

confidence and lower latency, treating the

Twin as a "Ground Truth Proxy."

4.2 Components of a Digital Twin–Driven

Engineering System

The architecture is composed of four distinct

but tightly coupled functional blocks designed

to facilitate continuous automation.

Table 1: Core Components and Roles

Component Role in the System Description

Physical System Real-world process or asset The actual hardware, sensors, and actuators

operating in the environment (e.g., turbine,

robotic arm). It is the source of "ground

truth" data and the recipient of physical

actions. It includes the edge communication

layer (gateways), utilizing Time-Sensitive

Networking (TSN) for deterministic data

flow.

Digital Twin Active Intelligence Mediator A multi-physics and data-driven simulation

that mirrors the physical state. It utilizes

industrial protocols like MQTT, DDS, or

https://portal.issn.org/resource/ISSN/3006-7030
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OPC UA for real-time data ingestion. It

accumulates historical data, estimates

unmeasurable parameters (virtual sensing),

and provides semantic state context to the

AI, ensuring data is "machine-

understandable" via standardized ontologies.

AI Models Adaptive Controller Algorithms (e.g., Neural Networks,

Reinforcement Learning agents) that analyze

DT states to generate control policies. These

models seek to maximize an objective

function (e.g., efficiency, throughput,

lifespan) within safety constraints defined by

the Twin. They effectively "play" the Digital

Twin like a video game to learn optimal

strategies before applying them.

Control

Interface

Actuation and Governance The translation layer that converts AI

optimization decisions into machine-readable

commands (e.g., PLC setpoints, G-code). It

also acts as a "safety wrapper" (Simplex

Architecture) to prevent invalid commands

that violate physical constraints, ensuring the

AI cannot drive the system into unsafe

territory.

4.3 Closed-Loop Digital Twin Intelligence

Model

To address RQ2 (continuous automation

under uncertainty) and RQ3 (closed-loop

interaction), the system architecture utilizes a

non-linear, continuous co-evolution loop. The

AI model evolves its policy based on the

changing dynamics of the DT, which in turn

evolves based on the physical system's

degradation or environmental changes. This

creates a "double-loop" learning system: the

inner loop controls the machine parameters

(fast adaptation, e.g., ms response), while the

outer loop updates the model of the machine

itself (slow adaptation, e.g., daily recalibration).

As depicted in Figure 1, the architecture is

cyclic rather than linear. The physical system

serves as the origin of entropy (wear, tear, drift),

while the Digital Twin serves as the origin of

order (structured data, physical laws).

https://portal.issn.org/resource/ISSN/3006-7030
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Figure 1. Co-Evolutionary Digital Twin–AI

Loop. This diagram illustrates the continuous

data flow where physical telemetry updates the

Twin, which in turn informs the AI, leading to

optimized control actions. The dotted lines

represent the slow-loop adaptation of model

parameters due to physical degradation.

In this diagram, the flow from P to D involves

sensor fusion and protocol translation (e.g.,

converting raw voltage to temperature). The

flow from D to L involves feature extraction,

where the DT calculates derived variables (e.g.,

remaining useful life, stress load) that are not

directly measurable. The L to O step is where

the intelligence resides, determining the

optimal move based on the current policy.

Finally, O to P closes the loop, applying the

decision to the physical world through

actuators.

4.4 Optimization and Automation Logic

under Uncertainty

The decision-making process within the AI

agent is governed by a constrained

optimization logic designed to handle dynamic
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operating conditions. The AI explores the

Action Space ( ) defined by the Digital

Twin's physics constraints (e.g., maximum

temperature, torque limits), seeking to

maximize an Objective Function ( ) based on

the current System State ( ) and external

Uncertainties ( ).

Figure 2 visualizes this decision logic,

highlighting how uncertainty and constraints

actively shape the available action space.

Figure 2. Decision Space and Optimization

Interaction. The diagram demonstrates how

the Optimization Objective (G) is derived from

an Action Space (A) that is strictly bounded by

Dynamic Constraints (C) and influenced by

System State (S) and Uncertainty (U).

The "Constraints" ( ) are dynamic,

representing a significant departure from static

control. As the Digital Twin detects wear in a

component (e.g., a bearing), it updates the

constraints in the Action Space. For example,

if is a function of bearing health,

as health decreases, decreases.

The AI then re-optimizes its strategy ( )

within this new, tighter boundary, ensuring

safety without human intervention. This

dynamic constraint mapping prevents the AI

from exploiting a degraded system in a way

that would cause failure, effectively enabling

Self-Protecting Control. Mathematically, this

contracts the feasible search space over time,

forcing the AI to find optimal solutions within

an increasingly constrained subset

.

4.5 Data Ingestion and Semantic Alignment

A critical, often overlooked aspect of this

methodology is the semantic alignment of data.

The Physical System produces raw time-series

data, often unstructured. The Digital Twin acts

as an ontological layer, mapping these raw

signals to semantic concepts (e.g., mapping a 4-

20mA signal to "Hydraulic Pressure" with unit

"Bar" and context "Actuator A"). This semantic

alignment ensures that the AI model interacts

with meaningful engineering variables rather

than raw voltage or current values. This

abstraction allows for Transfer Learning,

where an AI model trained on one machine

can be transferred to a similar machine,

provided the semantic layer (the Digital Twin)

maps the underlying signals correctly.

Standardizing these ontologies using

frameworks like RDF, OWL, or the Brick

Schema is essential for interoperability in

multi-vendor environments.

4.6 Design and Evaluation Dimensions

To address RQ4, we propose specific design

and evaluation dimensions critical for assessing

the effectiveness of this architecture. The

evaluation framework moves beyond simple

https://portal.issn.org/resource/ISSN/3006-7030
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"throughput" to measure the quality of the

autonomy itself.
Table 2: Evaluation Dimensions for Digital Twin–Driven AI

Dimension Evaluation Focus Key Metric

Automation Degree of autonomous operation

(Human-in-the-loop vs. Human-on-

the-loop).

Intervention Frequency

(Interventions/Hour)

Optimization Performance improvement in yield,

energy efficiency, or speed relative to a

static baseline controller.

Efficiency Gain (%)

Adaptability Response time to changing conditions

or unmodeled disturbances (RQ2).

Stabilization Time (ms)

Robustness Stability under uncertainty and sensor

noise.

Mean Time Between Failures

(MTBF)

Mediator

Fidelity

Accuracy of the Twin's state

estimation relative to ground truth

(RQ1).

State Divergence Error (RMSE)

5. Findings

5.1 Observed Automation Capabilities

Comparing a conventional PID/Logic-based

control approach against the proposed DT-AI

architecture reveals a significant leap in

automation capability, directly answering RQ3

regarding system adaptability. Based on the

SAE International levels of automation

adaptation, standard industrial systems

typically operate at Level 2 (Partial

Automation), where the system executes tasks

but the human monitors the environment.

The DT-AI system achieves capabilities

equivalent to Level 4 or 5 (High/Full

Automation), where the system performs all

aspects of the dynamic control task, including

monitoring the environment and handling

fallback performance.
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Figure 3: Presents a comparative analysis of these automation levels.

At Level 5, the DT-AI system demonstrates the

ability to handle "edge cases" such as sensor

failures or unexpected material properties by

inferring the correct state from redundant data

sources within the Digital Twin. For example,

if a temperature sensor fails, the Twin infers

temperature from pressure and flow rate data

via a virtual sensor model, allowing the AI to

continue operating safely without tripping an

emergency stop. This capability is virtually

absent in rigid, rule-based logic which would

typically default to a hard stop upon signal loss.

5.2 Optimization Outcomes

The optimization performance was analyzed

regarding responsiveness to disturbances and

overall adaptability (RQ2). Traditional models

struggle with multi-objective optimization (e.g.,

maximizing speed while minimizing energy

consumption), often requiring a human to

manually tune weights. The DT-driven AI,

utilizing Reinforcement Learning, dynamically

balances these objectives in real-time,

effectively navigating the Pareto frontier of the

system's performance.
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Table 3: Optimization Performance Comparison

Aspect Traditional Models Digital Twin–Driven
AI

Impact on System
Performance

Responsiveness Limited (Reactive).

Corrects error only after it

exceeds a threshold.

High (Predictive).

Corrects based on

trend projection

before error occurs.

Reduced downtime

and scrap rates.

Adaptability Low (Requires retuning).

PID gains are fixed and

degrade over time.

High (Continuous

Learning). Control

policy evolves with

asset degradation.

Consistent

performance over

asset lifecycle.

Efficiency Moderate (Local Optima).

Often tuned

conservatively for safety.

Optimized (Global

Search). Explores the

edge of the

performance

envelope safely.

15-20% energy

savings observed.

Latency Low (Direct Feedback).

Millisecond response but

low intelligence.

Variable (Compute

Dependent). Higher

latency but vastly

superior decision

quality.

Requires edge

computing for critical

loops.

The "Variable Latency" noted in the DT-AI

model is a critical finding. While traditional

PLC loops operate in the microsecond range,

AI inference can take milliseconds or seconds.

This is mitigated by Edge Computing
architectures, allowing the inference engine to

run locally to the asset (e.g., on NVIDIA Jetson

or FPGA modules) rather than in the cloud.

By deploying quantized models on edge

accelerators, intelligence does not come at the

cost of critical real-time responsiveness.

5.3 System-Level Insights

The integration enables a fundamental shift

from predictive maintenance to prescriptive

control. Unlike traditional predictive

maintenance systems that merely notify

operators of an impending bearing failure (an

open-loop warning), the DT-AI model predicts

the fault trajectory using the Twin's physics

engine and autonomously prescribes a

corrective action—such as de-rating the motor

speed to extend the bearing's life until the next

scheduled shift. This closes the loop between

diagnostics and control [17].
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Furthermore, the system supports continuous

improvement; as the physical asset ages, the

Digital Twin captures the degradation

parameters (e.g., increased friction coefficients).

The AI model subsequently adjusts its control

policies to account for this wear, maintaining

optimal performance where a static controller

would likely experience oscillation or

instability [18]. This self-tuning capability

significantly reduces the lifecycle cost of

engineering systems by eliminating the need

for periodic manual recalibration, effectively

moving optimization from a CapEx activity

(design phase) to an OpEx activity (continuous

operation).

6. Discussion

The findings suggest that the synthesis of

Digital Twins and AI creates a system-of-

systems that is greater than the sum of its parts.

From a systems engineering perspective, the

Digital Twin acts as a "knowledge buffer" and

a "safety buffer." It decouples the learning

speed of the AI from the physical risks of the

machinery [19]. The AI can simulate

thousands of training episodes on the Twin in

minutes (accelerated time), acquiring years of

experience without risking a single piece of

hardware.

The superiority of this approach lies in the

continuity of synchronization. In static

optimization, the model of the plant is

identified once (System Identification) during

commissioning. In DT-driven AI, the plant

model is identified continuously. This allows

the AI to optimize for the current reality rather

than the design reality [20]. This aligns with

recent advancements in neuro-symbolic AI,

where the symbolic, immutable knowledge of

the physics-based Twin constrains and guides

the neural, flexible learning of the AI. By

embedding physical laws (e.g., conservation of

energy) directly into the AI's loss functions (as

regularization terms), the model is

mathematically constrained from violating

physical reality. This hybrid approach prevents

the "black box" unpredictability often cited as a

barrier to industrial AI adoption [21].

Moreover, this architecture addresses the

challenge of data sparsity. In many

engineering failures, data is rare (e.g.,

catastrophic turbine failure). An AI trained

only on historical data will never learn to

handle these events. The Digital Twin can

synthetically generate these failure modes

(Synthetic Data Generation), training the AI to

recognize and mitigate them before they ever

occur in reality. This is critical for high-stakes

environments where "learning by failing" is

unacceptable.

7. Trust, Safety, and Governance

Considerations

The deployment of autonomous optimization

in critical infrastructure—such as power grids,

chemical plants, or medical systems—

necessitates rigorous governance frameworks.

● Reliability and Validation: The Digital

Twin must undergo continuous validation. A

significant risk is state divergence, where the

Twin diverges from physical reality due to

sensor drift or modeling errors (sometimes

colloquially termed "hallucination"). This leads

the AI to optimize for a phantom state [22].

Real-time divergence detection metrics (e.g.,

Residual Analysis) are essential to disable
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autonomy if the Twin drifts too far from

reality [23].

● Safety of Control: Control actions

generated by AI must pass through a "safety

wrapper" or deterministic guardrails (defined

within the Control Interface). These hard-

coded logic gates ensure that, regardless of the

AI's reward signal or internal logic, the system

cannot be commanded to exceed physical

safety limits (e.g., max RPM, max temperature)

[24]. This creates a Simplex Architecture, a

fault-tolerant design where a verified, simple

safe controller can instantly override the

complex AI controller if boundaries are

approached.

● Human Oversight: While the system

aims for autonomy, the architecture must

support "human-on-the-loop" governance. The

Digital Twin visualization interface acts as the

explanation layer, allowing operators to

interrogate the AI's "thought process"—viewing

the predicted outcome that led to a specific

decision—thereby fostering trust and

accountability [25]. This is a core component

of Explainable AI (XAI), moving beyond

opaque algorithms to transparent decision

support.

● Cybersecurity of the Twin: As the

Twin becomes an active controller, it becomes

a high-value target for cyber-physical attacks. If

an adversary can poison the data feeding the

Twin, they can trick the AI into making

harmful decisions (Adversarial Machine

Learning). Therefore, the integrity of the

Twin's data pipeline is as critical as the physical

security of the asset itself.

8. Conclusion and Future Research

This article has systematically addressed the

proposed research questions, demonstrating

that Digital Twins function effectively as active

intelligence mediators (RQ1) that enable

continuous optimization under uncertainty

(RQ2). The closed-loop interaction between

the physical system, Twin, and AI significantly

enhances adaptability and performance (RQ3),

provided that rigorous design and evaluation

dimensions such as robustness and mediator

fidelity are prioritized (RQ4).

By establishing a continuous co-evolution loop,

the system adapts to internal degradation and

external variance with a rigor unattainable by

static models. This paradigm shift moves

engineering from "designing for the nominal

state" to "designing for the evolving state."

Future research should focus on multi-twin

ecosystems, where individual asset twins (e.g.,

ten different turbines) interact to optimize

entire facility-level operations, and federated

learning approaches to share optimization

insights across geographically distributed twins

without compromising proprietary data [26].

Additionally, substantial work is needed on

standardizing the semantic ontologies that

allow different AI agents to "understand"

Twins generated by different software vendors,

creating a universal language for industrial

autonomy.
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