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Abstract

The escalating complexity of modern engineering systems, characterized by high
dimensionality, stochastic dynamics, and nonlinear interdependencies, has
rendered traditional modelbased control strategies insufficient. Static models,
typically derived from ideal design parameters (CAD/CAE data), fail to account
for the continuous temporal degradation, sensor drift, component fatigue, and
environmental variance inherent in physical assets operational in the field. This
research investigates the architectural and functional integration of Digital Twins
(DT) with Artificial Intelligence (Al) to establish a paradigm of active, closed-loop
intelligence. By conceptualizing the Digital Twin not merely as a passive replica or
visualization tool but as a semantic mediator for bidirectional synchronization,
this study demonstrates how Al models can leverage realtime highfidelity state
estimation to drive autonomous optimization. The proposed framework facilitates
a fundamental transition from reactive maintenance and static control to
predictive, selfoptimizing system behaviors that adapt to the evolving physics of
the machinery. The findings indicate that Digital Twin—driven Al significantly
enhances automation capability levels and optimization responsiveness compared
to conventional control methods, offering a robust, theoretically grounded pathway
for the management of next-generation Cyber-Physical Systems (CPS)..
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1. Introduction

The engineering landscape is undergoing a
fundamental transformation driven by the
convergence of operational technology (OT)
and information technology (IT), a shift often
categorized under the umbrella of Industry 4.0
and the emerging Industry 5.0 paradigms.
While

interconnectivity, data logging, and smart

Industry 4.0 focused heavily on

automation through Cyber-Physical Systems
(CPS), Industry 5.0 emphasizes the synergy
between humans and autonomous machines,
requiring systems that are not only efficient
but also resilient, explainable, and adaptive to
Modern

systems—ranging from

unforeseen  contexts. complex

engineering smart
manufacturing grids and distributed energy
resources to autonomous aerospace vehicles—
exhibit a scale of interconnectivity and
uncertainty that challenges the fundamental
limits of classical control theory [1]. In these
environments, system behaviors are often
from the non-linear

emergent, arising

interactions of thousands of subsystems,
making them difficult to predict using linear
differential equations or static look-up tables
alone. For example, in a renewable energy grid,
the stochastic nature of wind generation
coupled with fluctuating consumer demand
creates a control problem where the optimal

shifts

millisecond, defying static programmatic logic.

operating  point millisecond by

Traditional optimization approaches, such as
static Model Predictive Control (MPC) or rule-
based logic (e.g., PID controllers), rely on fixed
identified

commissioning phase (System Identification).

parameters during the

These models operate on the assumption that
the system's physical properties—mass, friction
coefficients,  thermal  conductivity, and
electrical resistance—remain constant over time.
However, in reality, these parameters inevitably
drift due to mechanical wear, material fatigue,
environmental thermal shifts, and unmodeled

dynamics [2]. This
between the "as-designed" model and the "as-

widening  divergence

operated" physical asset creates a significant
"reality gap." Consequently, control actions
based on static models become increasingly
sub-optimal, leading to energy waste, safety
risks, and increased latency in decision-making
as operators are forced to intervene manually
to correct deviations. For instance, a PID
controller tuned for a new robotic arm may
induce dangerous oscillations in an arm with
five years of joint wear, as the controller lacks
the "awareness" of the changed physical state
(e.g., increased backlash or friction).

To address these limitations, the Digital Twin
(DT) has emerged as a critical enabler. Defined
as a virtual representation of a physical asset,
process, or system, the DT provides a dynamic
isomorphism that mirrors the lifecycle of its
physical counterpart [3]. Unlike a standard
simulation, which is a static snapshot used for
design, a DT is a living model that evolves
through continuous data ingestion. However, a
DT alone is primarily an observational tool; it
can diagnose the present state but cannot
inherently alter it. To achieve high-level
automation and optimization, the descriptive
and diagnostic capacity of the DT must be

coupled with the cognitive, predictive, and
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capabilities of  Artificial
Intelligence (Al) [4].
This research conceptualizes and evaluates

Twin-driven Al

foundation for

decision-making

Digital models as the

autonomous  engineering
systems. The distinction between "automated"
and "autonomous" is crucial here: automated
systems follow pre-programmed rules (if X then

Y), while

themselves,

autonomous systems govern

making decisions in  novel
situations to satisfy high-level goals (optimize Y
subject to Z) even when X changes.

1.1 Research Questions

To rigorously investigate the integration of
these technologies, this study addresses the
following four research questions:

° RQ1. How can Digital Twins be
operationalized as active intelligence mediators
rather than passive virtual replicas in complex
engineering systems’

° RQ2. In what ways do Al models
with  Digital enable

integrated Twins

continuous automation and optimization

under dynamic and uncertain operating
conditions?

° RQ3. How
interaction between physical systems, Digital
and Al models
adaptability and performance’

° RQ4. What design and evaluation

dimensions are

does  closed-loop

Twins, influence system

critical for assessing the
effectiveness of Digital Twin-driven Al in
complex engineering environments’

The objective is to define a closed-loop
architecture where the DT serves as the

training and validation ground for Al agents,

which

control actions upon the physical system.

in turn execute optimization and

2. Research Contributions

This manuscript advances the state of the art
through the following contributions, directly
mapping to the outlined research questions:

) Conceptual Framing of Active
Intelligence (Addressing RQ1): The research
redefines the role of the Digital Twin from a
passive repository of state data to an active
intelligence mediator. In this view, the DT acts
as a semantic bridge that synchronizes physical
reality with digital cognition, filtering sensor
noise and reconstructing unobservable states
(Virtual Sensing) to provide the Al with a
"complete" view of the world. This framing
moves beyond "monitoring" to "mediation,"
positioning the Twin as the authoritative
source of truth for the Al controller.

) Intelligence-in-the-Loop Optimization
(Addressing RQ2): A closed-loop framework is
proposed where Al models utilize the DT for
low-risk  exploration and  reinforcement
learning. This enables the deployment of
optimization strategies—such as aggressive yield
maximization or novel path planning—that are
unsafe or impractical to test on physical
hardware due to the risk of damage or
catastrophic failure. It introduces the concept
of "safe exploration" via digital proxies,
allowing the Al to fail thousands of times
virtually to succeed once physically.

° Adaptive System Insights (Addressing
RQ3): The study provides empirical-theoretical
evidence regarding the superiority of co-
evolving DT-AI systems over static baselines.

Specifically, it highlights the system's ability to
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handle dynamic constraints and non-linear
disturbances by continuously updating the
internal physics model used by the Al, thereby
solving the problem of model degradation. It
demonstrates that adaptability is a function of
the synchronization frequency between the
Twin and the Asset.

3. Related Work

Recent literature reflects a surge in Digital
Twin applications, yet specific gaps remain in
achieving fully autonomous control.

Digital Twin Architectures

Jones et al. [5] and Tao et al. [6] have
established foundational five-dimension DT
architectures (Physical Entity, Virtual Entity,
Services, Data, and Connections). However,
their focus remains largely on data fusion,
protocol interoperability, and visualization,
While

semantic modeling of DTs has improved,

rather than active control loops.
allowing for better data interoperability [7], the
integration of these semantic layers with
decision-making algorithms is often treated as
a secondary concern, leaving the "brain" of the

system disconnected from its "body." Existing

architectures  often lack the feedback
mechanisms required for the Virtual Entity to
drive changes in the Physical Entity

autonomously, treating the Twin as a
dashboard rather than a controller. Most
implementations stop at "monitoring," failing
to close the loop back to actuation.

Al for Control and Optimization

The application of Deep Reinforcement
Learning (DRL) for industrial control has
gained traction [8], [9]. DRL offers the promise
non-inear control

of learning complex,

policies  without requiring an  explicit
mathematical model. However, training DRL
agents directly on physical systems is rarely
feasible due to sample inefficiency (requiring
millions of interactions) and safety concerns
(random exploration can damage equipment).
Sim-to-Real transfer techniques have been
explored to bridge this gap [10], but these
approaches often lack the continuous
synchronization required to handle system
degradation over time; a policy learned on a
"new" machine simulation may fail on an "old"
physical machine [11]. This "drift" between the
training environment and the deployment
environment is a primary barrier to adoption,
often referred to as the "reality gap" in robotics
and control theory.

Cyber-Physical Systems and Automation
Research in CPS automation has highlighted
the need for selfadaptive systems that can
reconfigure themselves in response to faults
[12]. Current approaches often segregate the
monitoring system (DT) from the control
system (Al), treating them as separate silos [13].
IEEE  Transactions on
that  the

nascent,

Recent surveys in

Industrial ~ Informatics  suggest

fields s

specifically regarding the "co-evolution" where

convergence of these
the DT updates the Al's internal model in real-
time [14], [15]. This study addresses these gaps
by formalizing the feedback mechanisms
between state estimation and autonomous
architecture

control, proposing a unified

where the Al and DT evolve in tandem.
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4. Methodology

4.1 Operationalizing Digital Twins as Active
Intelligence Mediators

The proposed methodology conceptualizes the
engineering system not as distinct hardware
and software components, but as a co-evolving
dyad. To answer RQ1, we operationalize the
Digital Twin as an active mediator rather than
a passive replica. In this framework, the
Physical System generates continuous streams
of telemetry (vibration, temperature, pressure,
current). The Digital Twin absorbs this data
not just to archive it, but to maintain a high-
fidelity state representation using physics-based
solving or data-driven surrogates.

Crucially, the AI model does not interact with
the raw physical data alone, which is often
noisy, sparse, or delayed. Instead, it perceives
the system through the synthesized, semantic
lens of the DT. The DT performs data
imputation and noise reduction, offering the

Al a "clean" and "complete" state vector [16].

This process often involves Virtual Sensing,
where the DT

parameters (e.g., internal turbine temperature,

estimates unmeasurable
stress concentration at a hidden joint, or
chemical concentration in a sealed reactor)
based on accessible data (e.g., exhaust gas
temperature) using techniques ranging from
Kalman Filters to Neural Estimators (e.g.,
Physics-Informed Neural Networks - PINN).
This allows the Al to focus on high-level
optimization logic rather than low-level signal
processing. By abstracting the physical
complexity into a standardized digital state
space, the Al can operate with higher
confidence and lower latency, treating the
Twin as a "Ground Truth Proxy."

4.2 Components of a Digital Twin-Driven
Engineering System

The architecture is composed of four distinct
but tightly coupled functional blocks designed

to facilitate continuous automation.

Description

Table 1: Core Components and Roles
Component Role in the System
Physical System Real-world process or asset
Digital Twin Active Intelligence Mediator

The actual hardware, sensors, and actuators
operating in the environment (e.g., turbine,
robotic arm). It is the source of "ground
truth" data and the recipient of physical
actions. It includes the edge communication
layer (gateways), utilizing Time-Sensitive
Networking (TSN) for deterministic data

flow.

A multi-physics and data-driven simulation
that mirrors the physical state. It utilizes
industrial protocols like MQTT, DDS, or
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Al Models Adaptive Controller
Control Actuation and Governance
Interface

OPC UA for realtime data ingestion. It
accumulates  historical ~data, estimates
unmeasurable parameters (virtual sensing),
and provides semantic state context to the
Al, ensuring  data is "machine-

understandable" via standardized ontologies.

Algorithms  (e.g.,  Neural = Networks,
Reinforcement Learning agents) that analyze
DT states to generate control policies. These
models seek to maximize an objective
function (e.g., efficiency, throughput,
lifespan) within safety constraints defined by
the Twin. They effectively "play" the Digital
Twin like a video game to learn optimal

strategies before applying them.

The translation layer that converts Al
optimization decisions into machine-readable
commands (e.g., PLC setpoints, G-code). It
also acts as a "safety wrapper" (Simplex
Architecture) to prevent invalid commands
that violate physical constraints, ensuring the
Al cannot drive the system into unsafe

territory.

4.3 Closed-Loop Digital Twin Intelligence
Model

To address RQ2 (continuous automation
under uncertainty) and RQ3 (closed-loop
interaction), the system architecture utilizes a
non-linear, continuous co-evolution loop. The
Al model evolves its policy based on the
changing dynamics of the DT, which in turn
evolves based on the physical system's

degradation or environmental changes. This

creates a "double-loop" learning system: the
inner loop controls the machine parameters
(fast adaptation, e.g., ms response), while the
outer loop updates the model of the machine
itself (slow adaptation, e.g., daily recalibration).
As depicted in Figure 1, the architecture is
cyclic rather than linear. The physical system
serves as the origin of entropy (wear, tear, drift),
while the Digital Twin serves as the origin of

order (structured data, physical laws).
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v

Optimization and Control
Decisions

Figure 1. Co-Evolutionary Digital Twin-Al
Loop. This diagram illustrates the continuous
data flow where physical telemetry updates the
Twin, which in turn informs the Al, leading to
optimized control actions. The dotted lines
represent the slow-loop adaptation of model
parameters due to physical degradation.

In this diagram, the flow from P to D involves
sensor fusion and protocol translation (e.g.,
converting raw voltage to temperature). The
flow from D to L involves feature extraction,

where the DT calculates derived variables (e.g.,

remaining useful life, stress load) that are not
directly measurable. The L to O step is where
the the

optimal move based on the current policy.

intelligence resides, determining

Finally, O to P closes the loop, applying the

decision to the physical world through

actuators.

4.4 Optimization and Automation Logic
under Uncertainty

The decision-making process within the Al
agent is constrained

governed by a

optimization logic designed to handle dynamic

| Ahm

https://sesjournal.com

ed-2026 | Page 55


https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

Volume 4, Issue 2, 2026

operating conditions. The Al explores the

Action Space (":l ) defined by the Digital
Twin's physics constraints (e.g., maximum

temperature, torque limits), seeking to

,
maximize an Objective Function (G) based on

Uncertainty & External
Disturbances

the current System State (‘5 ) and external
h

Figure 2 visualizes this decision logic,

Uncertainties

highlighting how uncertainty and constraints

actively shape the available action space.

/——b System State —\

Action Space p—| Optimization Objective

\} Dynamic Constraints

Figure 2. Decision Space and Optimization
Interaction. The diagram demonstrates how
the Optimization Objective (G) is derived from
an Action Space (A) that is strictly bounded by
Dynamic Constraints (C) and influenced by
System State (S) and Uncertainty (U).

The "Constraints" ( C ) are dynamic,
representing a significant departure from static
control. As the Digital Twin detects wear in a
component (e.g., a bearing), it updates the

constraints in the Action Space. For example,

: RPﬂ‘fﬁ-uu*
if

is a function of bearing health,

RP ﬂfrmu*

decreases.

(G)

as health decreases,

The Al then reoptimizes its strategy
within this new, tighter boundary, ensuring
safety without human intervention. This
dynamic constraint mapping prevents the Al
from exploiting a degraded system in a way
that would cause failure, effectively enabling

Self-Protecting Control. Mathematically, this

contracts the feasible search space A over time,
forcing the Al to find optimal solutions within
an increasingly constrained subset

*4-.?0_&'- - Aiot:xi‘ .

4.5 Data Ingestion and Semantic Alignment

A critical, often overlooked aspect of this
methodology is the semantic alignment of data.
The Physical System produces raw time-series
data, often unstructured. The Digital Twin acts
as an ontological layer, mapping these raw
signals to semantic concepts (e.g., mapping a 4-
20mA signal to "Hydraulic Pressure" with unit
"Bar" and context "Actuator A"). This semantic
alignment ensures that the Al model interacts
with meaningful engineering variables rather
than raw voltage or current values. This
abstraction allows for Transfer Learning,
where an Al model trained on one machine
can be transferred to a similar machine,
provided the semantic layer (the Digital Twin)
maps the underlying signals correctly.
Standardizing ~ these  ontologies  using
frameworks like RDF, OWL, or the Brick
Schema is essential for interoperability in
multi-vendor environments.

4.6 Design and Evaluation Dimensions

To address RQ4, we propose specific design
and evaluation dimensions critical for assessing
the effectiveness of this architecture. The

evaluation framework moves beyond simple
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"throughput" to measure the quality of the

autonomy itself.

Table 2: Evaluation Dimensions for Digital Twin-Driven Al
Dimension Evaluation Focus Key Metric
Automation Degree of autonomous operation Intervention Frequency
(Human-in-the-loop vs. Human-on-  (Interventions/Hour)
the-loop).
Optimization Performance improvement in yield,  Efficiency Gain (%)
energy efficiency, or speed relative to a
static baseline controller.
Adaptability Response time to changing conditions  Stabilization Time (ms)
or unmodeled disturbances (RQ2).
Robustness Stability under uncertainty and sensor ~ Mean Time Between Failures
noise. (MTBF)
Mediator Accuracy of the Twin's state  State Divergence Error (RMSE)
Fidelity estimation relative to ground truth
(RQ1).
5. Findings

5.1 Observed Automation Capabilities

Comparing a conventional PID/Logic-based
control approach against the proposed DT-AI
architecture reveals a significant leap in
automation capability, directly answering RQ3

regarding system adaptability. Based on the

Automation), where the system executes tasks
but the human monitors the environment.

The DT-AI

equivalent

achieves capabilities

5 (High/Full

Automation), where the system performs all

system

to Level 4 or

aspects of the dynamic control task, including

SAE International levels of automation monitoring the environment and handling
adaptation, standard  industrial  systems fallback performance.

typically operate at Level 2  (Partial
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Figure 3:

Presents a comparative analysis of these automation levels.

AutomationCapabilityLevels

o
>
®

|
=

=

=
®©
o
]

o

Conventional Control

At Level 5, the DT-AI system demonstrates the
ability to handle "edge cases" such as sensor
failures or unexpected material properties by
inferring the correct state from redundant data
sources within the Digital Twin. For example,
if a temperature sensor fails, the Twin infers
temperature from pressure and flow rate data
via a virtual sensor model, allowing the Al to
continue operating safely without tripping an
emergency stop. This capability is virtually
absent in rigid, rule-based logic which would

typically default to a hard stop upon signal loss.

Digital Twin Al

5.2 Optimization Outcomes

The optimization performance was analyzed
regarding responsiveness to disturbances and
overall adaptability (RQ2). Traditional models
struggle with multi-objective optimization (e.g.,
maximizing speed while minimizing energy
consumption), often requiring a human to
manually tune weights. The DT-driven Al
utilizing Reinforcement Learning, dynamically
balances these objectives in  real-time,
effectively navigating the Pareto frontier of the

system's performance.
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Table 3: Optimization Performance Comparison
Aspect Traditional Models Digital Twin-Driven  Impact on System
Al Performance

Responsiveness Limited (Reactive).  High (Predictive). Reduced downtime
Corrects error only after it ~ Corrects based on  and scrap rates.
exceeds a threshold. trend projection

before error occurs.

Adaptability Low (Requires retuning). High  (Continuous  Consistent
PID gains are fixed and  Learning). Control  performance over
degrade over time. policy evolves with  asset lifecycle.

asset degradation.

Efficiency Moderate (Local Optima).  Optimized  (Global — 15-20% energy
Often tuned  Search). Explores the  savings observed.
conservatively for safety. edge of the

performance
envelope safely.

Latency Low (Direct Feedback). Variable (Compute Requires edge
Millisecond response but  Dependent). Higher  computing for critical
low intelligence. latency but vastly  loops.

superior decision
quality.

The "Variable Latency" noted in the DT-AI
model is a critical finding. While traditional
PLC loops operate in the microsecond range,
Al inference can take milliseconds or seconds.
This s Edge

architectures, allowing the inference engine to

mitigated by Computing
run locally to the asset (e.g., on NVIDIA Jetson
or FPGA modules) rather than in the cloud.
By deploying quantized models on edge
accelerators, intelligence does not come at the

cost of critical real-time responsiveness.

5.3 System-Level Insights
The integration enables a fundamental shift
from predictive maintenance to prescriptive

Unlike

maintenance

control. traditional ~ predictive

systems that merely notify
operators of an impending bearing failure (an
open-loop warning), the DT-AI model predicts
the fault trajectory using the Twin's physics
engine and autonomously prescribes a
corrective action—such as derating the motor
speed to extend the bearing's life until the next
scheduled shift. This closes the loop between

diagnostics and control [17].

https://sesjournal.com

| Ahmed - 2026 |

Page 59


https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

Volume 4, Issue 2, 2026

Furthermore, the system supports continuous
improvement; as the physical asset ages, the

Digital Twin captures the degradation

parameters (e.g., increased friction coefficients).

The Al model subsequently adjusts its control
policies to account for this wear, maintaining
optimal performance where a static controller
likely
instability [18]. This self-tuning capability

would experience  oscillation  or
significantly reduces the lifecycle cost of
engineering systems by eliminating the need
for periodic manual recalibration, effectively
moving optimization from a CapEx activity
(design phase) to an OpEx activity (continuous
operation).

6. Discussion

The findings suggest that the synthesis of
Digital Twins and Al creates a system-of-
systems that is greater than the sum of its parts.
From a systems engineering perspective, the
Digital Twin acts as a "knowledge buffer" and
a "safety buffer." It decouples the learning
speed of the Al from the physical risks of the
[19]. The AI can

thousands of training episodes on the Twin in

machinery simulate
minutes (accelerated time), acquiring years of
experience without risking a single piece of
hardware.

The superiority of this approach lies in the
continuity of synchronization. In static
optimization, the model of the plant is
identified once (System Identification) during
commissioning. In DT-driven Al, the plant
model is identified continuously. This allows
the Al to optimize for the current reality rather

than the design reality [20]. This aligns with

recent advancements in neuro-symbolic Al,

where the symbolic, immutable knowledge of
the physics-based Twin constrains and guides
the neural, flexible learning of the Al By
embedding physical laws (e.g., conservation of
energy) directly into the Al's loss functions (as
regularization ~ terms), the  model s
mathematically constrained from violating
physical reality. This hybrid approach prevents
the "black box" unpredictability often cited as a
barrier to industrial Al adoption [21].

Moreover, this architecture addresses the

challenge of data sparsity. In many

(e.g.,
catastrophic turbine failure). An Al trained

engineering failures, data is rare

only on historical data will never learn to
handle these events. The Digital Twin can
synthetically generate these failure modes
(Synthetic Data Generation), training the Al to
recognize and mitigate them before they ever
occur in reality. This is critical for high-stakes
environments where "learning by failing" is
unacceptable.
7.  Trust,

Considerations

Safety, and  Governance
The deployment of autonomous optimization
in critical infrastructure—such as power grids,
chemical plants, or medical systems—
necessitates rigorous governance frameworks.

° Reliability and Validation: The Digital
Twin must undergo continuous validation. A
significant risk is state divergence, where the
Twin diverges from physical reality due to
sensor drift or modeling errors (sometimes
colloquially termed "hallucination"). This leads
the Al to optimize for a phantom state [22].
Real-time divergence detection metrics (e.g.,

Residual Analysis) are essential to disable
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autonomy if the Twin drifts too far from
reality [23].

° Safety of Control: Control actions
generated by Al must pass through a "safety
wrapper" or deterministic guardrails (defined
within the Control Interface). These hard-
coded logic gates ensure that, regardless of the
Al's reward signal or internal logic, the system
cannot be commanded to exceed physical
safety limits (e.g., max RPM, max temperature)
[24]). This creates a Simplex Architecture, a
fault-tolerant design where a verified, simple
safe controller can instantly override the
complex Al controller if boundaries are
approached.

° Human Oversight: While the system
aims for autonomy, the architecture must
support "human-on-the-loop" governance. The
Digital Twin visualization interface acts as the
layer, allowing

explanation operators  to

interrogate the Al's "thought process"—viewing
the predicted outcome that led to a specific
decision—thereby = fostering  trust  and
accountability [25]. This is a core component
of Explainable AI (XAI), moving beyond
opaque algorithms to transparent decision
support.

° Cybersecurity of the Twin: As the
Twin becomes an active controller, it becomes
a high-value target for cyber-physical attacks. If
an adversary can poison the data feeding the
Twin, they can trick the Al into making
(Adversarial Machine

Learning). Therefore, the integrity of the

harmful decisions

Twin's data pipeline is as critical as the physical

security of the asset itself.

8. Conclusion and Future Research
This article has systematically addressed the
proposed research questions, demonstrating
that Digital Twins function effectively as active
(RQ1) that

continuous optimization under uncertainty

intelligence mediators enable
(RQ2). The closed-loop interaction between
the physical system, Twin, and Al significantly
enhances adaptability and performance (RQ3),
provided that rigorous design and evaluation
dimensions such as robustness and mediator
fidelity are prioritized (RQ4).
By establishing a continuous co-evolution loop,
the system adapts to internal degradation and
external variance with a rigor unattainable by
static models. This paradigm shift moves
engineering from "designing for the nominal
state" to "designing for the evolving state."
Future research should focus on multi-twin
ecosystems, where individual asset twins (e.g.,
ten different turbines) interact to optimize
entire facility-level operations, and federated
learning approaches to share optimization
insights across geographically distributed twins
without compromising proprietary data [26].
Additionally, substantial work is needed on
standardizing the semantic ontologies that
allow different Al agents to "understand"
Twins generated by different software vendors,
creating a universal language for industrial
autonomy.
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