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Abstract 
Cassava leaf diseases present significant agricultural challenges due to 
visual similarity between pathological conditions and variability in field 
conditions, complicating timely intervention. The accuracy of disease 
identification in early stages has been critical in preventing crop losses; 
however, due to symptom overlap and environmental variations, manual 
monitoring has become increasingly difficult. In this paper, a deep learning 
approach for cassava disease diagnosis named "Modified Swin 
Transformer Framework" has been proposed, attempting to enhance 
classification capability by employing a transformer-based vision approach. 
In the proposed method, the hierarchical structure of Swin Transformer 
has been customized based on input dimensionality, adaptive patch 
embedding, and output targeting for cassava disease classification. In this 
approach, the input image has been split into adaptive non-overlapping 
patches and processed using shifted windows and attention within these 
patches. This process has helped the method link all windows efficiently by 
avoiding locality issues of non-overlapping regions in attention, while being 
computationally efficient. The framework has further developed based on 
Swin Transformer architecture and has included adaptive patch and 
position embeddings to take advantage of the transformer's global-linking 
capability by employing multi-head attention in these embeddings. 
Furthermore, the framework has developed and incorporated multi-scale 
feature aggregation into this method, which utilizes hierarchical feature 
fusion with these inclusive designs to address multi-scale symptom 
representation during processing. The inclusion of multi-scale aggregation 
has therefore facilitated this method to link global patterns as well as local 
patterns; hence, its integrity has helped improve disease classification 
capability by minimizing intra-class variability of cassava diseases and 
increasing inter-class differences among Cassava Bacterial Blight, Cassava 
Brown Streak Disease, Cassava Green Mottle, Cassava Mosaic Disease, 
and healthy leaves. In testing the proposed framework, an accuracy of 
96.80% and an F1-score of 96.40% have been achieved on the Kaggle 
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public dataset, which has outperformed standard CNN models and 
baseline Swin Transformer; the framework has thus proved its effectiveness 
as a computer-assisted tool for cassava disease observation and 
classification. 

 
INTRODUCTION
Cassava (Manihot esculenta), of the Euphorbiaceae 
family, has a strong agricultural significance as a staple 
food crop in tropical and subtropical regions; thus, 
cassava has shown potential for addressing food 
security challenges in developing economies. Since it 
was first cultivated in South America, cassava has 
existed in agricultural systems worldwide since the 
16th century, with significant adoption in Africa and 
Asia[1], [2]. Even though cassava is drought-resistant 
compared to other staple crops[3], a significant threat 
from foliar diseases has been shown globally[4], [5]. 
The mode of disease spread is through vectors, 
including whiteflies and aphids, or environmental 
transmission via contaminated tools. Stunted growth, 
yield reduction, and economic losses often follow in 
the wake of infection, but the characteristic symptoms 
on leaves including mosaic patterns, chlorosis, and 
necrotic lesions remain the feature of choice and focus 
of imaging assessment [6], [7], [8]. 
There are challenges in automatically diagnosing 
cassava diseases from field images. For one, high-
dimensional representations of images, in addition to 
the limited amount of labeled training examples from 
certain disease categories, might worsen the 
vulnerability to overfitting and the curse of 
dimensionality [9]. Transfer learning is often utilized 
to overcome these challenges in limited training 
examples [4], [10]. Furthermore, differences in 
symptom appearance, location, and contrast, as well 
as similarities between different diseases, make it 
difficult to distinguish correctly. Traditional 
convolutional neural networks might not work 
properly in capturing long-range dependencies in 
spatial features and tend to focus primarily on local 
patterns . 
However, these disadvantages recommend the 
development of a Swin Transformer model developed 
for accurate cassava disease detection. The model is 
based on a hierarchical transformer model in which 
the image is divided into adaptive nonoverlapping 
patches with a shifted window self-attention 

operation. Such a network would allow information 
to interact across windows with reduced 
computational cost and would not suffer from the 
locality constraint created due to the nonoverlapping 
window constraint introduced in traditional attention 
windows.[5], [11] The future scope will be to leverage 
this model to better detect cassava-related leaf 
diseases. With this background, the major 
contributions of this work are: 
The proposed Swin Transformer framework is 
customized and adapted to the input data 
dimensionality, embedding structure, and outcome of 
interest targeted in cassava image analysis. The 
proposed framework consists of adaptive patch 
embedding, multi-head attention mechanisms to 
capture global dependencies, and uses multi-scale 
feature aggregation. 
The multi-scale aggregation uses hierarchical feature 
fusion to efficiently encode disease characteristics 
through locally correlated features and capture 
symptoms at different scale.[6], [12] 
The demonstration that the Swin Transformer 
framework facilitates joint learning of long-range and 
local patterns. This dual mechanism reduces intra-
class variability in cassava disease presentations and 
enhances discrimination from visually similar 
diseases, including bacterial blight, viral mosaic, and 
nutritional deficiencies.[2], [13] 
Empirical validation showing that multi-scale 
aggregation enhances feature representation while the 
shifted-window multi-head self-attention effectively 
captures global context, collectively contributing to 
superior diagnostic performance compared to 
benchmark models. 
The proposed Swin Transformer framework 
demonstrates superior performance, achieving the 
highest classification accuracy on the Kaggle 
benchmark when compared to state-of-the-art CNN 
and Vision Transformer models.[10], [14] 
The manuscript is structured as follows: Section 2 
provides a view of related works. Section 3 introduces 
the new cassava diagnostic system. Section 4 mentions 
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the datasets, data pre-processing methods, and 
evaluation criteria. Section 5 displays the results of 
experiments.[15], [16] At last, Section 6 closes this 
paper with proposals for further research. 
 
Literature Review 
Deep learning (DL) was found to have efficacy in 
agricultural imaging and has been employed in diverse 
crop management settings, including rice diseases, 
wheat rust, tomato blight, and apple scab, as 
established in previous research works[17], [18]. The 
rising importance of cassava as a food security crop, as 
well as limitations in expert availability in some 
regions, has thus driven the need for a decision 
support system in agricultural imaging[19]. 
The early works on cassava disease classification were 
dominantly conducted using convolutional neural 
network (CNNs) architectures, as represented in 
Table 1. MobileNetV2 and VGG derivatives were 
considered for cassava image classification. AlexNet 
and VGG16/VGG19 were considered on digital leaf 
images[20]. Custom-built pipelines using DenseNet-
201 were also documented, including an evaluation 
using DenseNet-201, which reported results. 
Lightweight networks with an attention mechanism 
and deeper residual learning architectures were also 
considered, including attention MobileNetV2, M-
ResNet50, and DarkNet53 on cassava publicly 
available datasets[18]. 
Vision Transformers (ViTs) recently emerged as a 
solution to address the drawbacks of strictly local 

CNN-based feature learning in images. On the cassava 
image datasets, the application of the ViT concept as 
well as the hybrid CNN-ViT models has led to 
competitive results, with the contribution of the ViT 
on cassava datasets and other public datasets, as 
discussed in referencec[12], [18]. Additionally, models 
incorporating a CNN feature extractor and the 
transformer aggregator, as in the case of the Bagging-
Ensemble of the DenseNet201-ViT, have been 
discussed in reference. 
Nevertheless, some of the ongoing challenges to 
cassava disease image classification, even in the face of 
reported advancements, have been mentioned in the 
literature as: the potential underestimation of inter-
pixel dependencies by CNN-based architectures, the 
ViT model's potential susceptibility to a patch 
arrangement, or the lack of preservation of local 
details[17]. The computational expense, 
interpretability, as well as the ability to generalize well 
across datasets have been mentioned as ongoing issues 
in the literature, as well[3]. All these issues have been 
addressed by the devised hierarchical transformer 
framework. 
 
 
 
 
 
 

 
Table 1. Previous research on cassava disease detection utilizing CNNs, ViTs, and hybrid techniques. 

Author (Year) Dataset Detail Model Acc  

Ramcharan et al. (2017) [6] 
Cassava Leaf Dataset (2,756 
images) 

Custom CNN 93.00 

Amara et al. (2017) [7] Self-collected cassava images MobileNetV2 96.30 
Too et al. (2019) [8] Cassava disease dataset VGG-16 90.50 
Chen et al. (2020) [9] Cassava leaf images DenseNet-121 94.20 
Singh et al. (2021) [10] Cassava disease dataset Inception-ResNetV2 87.00 

Aboelenin et al. (2022) [11] Cassava leaf images Hybrid CNN-ViT 95.80 

Alford & Tuba (2023) [12] Cassava disease dataset VGG-19 80.27 
Li et al. (2023) [13] Cassava leaf images EfficientNet-B4 95.10 
Jiang et al. (2023) [14] Cassava disease dataset Vision Transformer 94.50 

Wang et al. (2024) [15] Cassava leaf dataset Swin Transformer 96.10 
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Methodology 
The proposed Swin Transformer framework aims to 
improve its feature representation abilities for 
automatic cassava disease diagnosis. An overview of 
the pipeline is presented in Figure 1, which includes 
image preprocessing and data augmentation, followed 
by disease classification using a customized Swin 
Transformer backbone. Performance comparison is 
performed against established CNN and transformer 
baselines. 
3.1. Data Preprocessing and Augmentation 
All images are rescaled to a fixed resolution and are 
standardized through intensity normalization to 
cancel out variability introduced by the image 
acquisition process. Data augmentation is also 
implemented during the training phase to generalize 
well in scenarios where the amount of data is very 
scarce, as is the case for many datasets involving 
agricultural images.[21], [22], [23], [24] Data 
augmentation is implemented through 
transformations that are spatial and photometric and 
are aimed at enhancing the semantic understanding 

of the diseases while introducing variability into the 
inputs to cancel out the overfitting problem.[25], [26], 
[27], [28], [29], [30], [31], [32], [33], [34], [35] 
 
 
3.2. Proposed Swin Transformer Architecture 
The framework is a customized hierarchical Swin 
Transformer framework for cassava image analysis, 
designed to jointly capture global contextual 
relationships and fine-grained local disease patterns. 
Input images are standardized to a fixed tensor size 
and converted into a sequence of adaptive non-
overlapping patch tokens, where a linear projection 
maps patch vectors into a learnable embedding space 
and the classification head maps the final 
representation to five outcome classes. Shifted-
window self-attention enables cross-window 
information exchange with computational efficiency, 
consequently mitigating locality constraints associated 
with non-overlapping attention windows.[36], [37], 
[38], [39], [40], [41]

 

Abbas et al. (2024) [16] Cassava disease images ResNet-50 + Transformer 95.60 

Proposed Work 
Kaggle Cassava Dataset 
(31,179 images) 

Modified Swin Transformer 96.80 
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Figure 1: An overview of the proposed pipeline. 

 
Each transformer block comprises (i) adaptive patch 
and positional embedding, (ii) multi-head self-
attention (MHA) for global dependency modelling, 
and (iii) multi-scale feature aggregation that replaces 
the standard feed-forward network, as illustrated in 
Figure 2. The aggregation integrates hierarchical 
feature fusion within a multi-scale design, hence 
strengthening feature extraction at different scales and 
supporting comprehensive symptom representation 
within the transformer stack.[42], [43], [44], [45], [46] 
 
3.2.1. Adaptive Patch and Positional Embedding 
Let an RGB input image be: 
  

𝐈 ∈ ℝ𝐻×𝑊×3 
 
The adaptive patch partitioning mechanism 
determines patch size based on image texture 
complexity: 

𝑃 = {
2 if 𝒯(𝐈) > 𝜏1
4 if 𝜏2 < 𝒯(𝐈) ≤ 𝜏1
8 otherwise

     

 

where 𝒯(𝐈) =
1

𝐻𝑊
∑ ∑ ∣ ∇𝐈(𝑖, 𝑗) ∣

𝑊

𝑗=1

𝐻

𝑖=1
 computes 

the average gradient magnitude as texture 
complexity, and 𝜏1 = 0.3, 𝜏2 = 0.1 are empirically 
determined thresholds. 

In the experimental configuration, images are resized 
to 224 x 224 x 3 and adaptively partitioned into 
patches based on texture complexity. Patch vectors 
are linearly projected into a d-dimensional 
embedding space represented in equation  The 
image is partitioned into 𝑁 non-overlapping patches 
of size 𝑃 × 𝑃: 

𝑁 =
𝐻

𝑃
×
𝑊

𝑃
 

 
Each patch is flattened and linearly projected to 
embedding dimension 𝐶: 

𝐗patches ∈ ℝ𝑁×3𝑃2 = Flatten(Partition(𝐈, 𝑃)) 
𝐙0 = [𝐱class; 𝐗patches𝐖𝐸] + 𝐄pos ∈ ℝ

(𝑁+1)×𝐶 

 
where: 

• 𝐖𝐸 ∈ ℝ
3𝑃2×𝐶 = learnable patch embedding 

matrix 
• 𝐄pos ∈ ℝ

(𝑁+1)×𝐶 = learnable positional 
embeddings 

• 𝐱class ∈ ℝ𝐶 = learnable classification token 
• [⋅;⋅] denotes concatenation along the 

sequence dimension. 
 

3.2.2. Window-based Multi-head Self-attention with 
Shifted Windows 
Within each block, MHA computes attention across 
multiple subspaces, consequently improving  
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representational capacity relative to single-head 
attention. For an input token matrix (Z), query, key, 
and value projections are defined in equation  For 
input features 𝐙 ∈ ℝ𝑁×𝐶, the enhanced window-
based attention mechanism is defined as: 
 
Query, Key, Value Projections: 

𝐐 = 𝐙𝐖𝑄, 𝐊 = 𝐙𝐖𝐾 , 𝐕 = 𝐙𝐖𝑉 
 
where 𝐖𝑄 ,𝐖𝐾 ,𝐖𝑉 ∈ ℝ

𝐶×𝑑𝑘 are projection 

matrices, and 𝑑𝑘 =
𝐶

ℎ
 with ℎ attention heads scaled 

dot-product self-attention is processed in equation 5 
as 

𝐙windowed = WindowPartition(𝐙,𝑀) ∈ ℝ
𝑁

𝑀2×𝑀
2×𝐶 

(5) 
 
Window-based attention is applied within local 
windows, and shifted windows are alternated across 

successive blocks, which enables cross-window 
interactions without full global quadratic cost, as 
described in the Swin formulation in equation 6. 
Residual learning is retained through the attention 
sub-layer: 

𝐙shifted = Roll(𝐙, ⌊
𝑀

2
⌋ , ⌊

𝑀

2
⌋) 

(6) 
 
3.2.3. Multi-Scale Feature Aggregation 
The standard transformer feedforward network is 
enhanced by multi-scale feature aggregation to 
strengthen pattern extraction at different symptom 
scales. The conventional FFN in transformer models 
is commonly expressed using two linear layers through 
GELU activation functions: 

MSA(𝐙) = LayerNorm(𝐙 +∑𝛼𝑠

3

𝑠=1

⋅ ℱ𝑠(𝐙)) 

(7) 
 

Modified Swin Transformer (SwinV2) for Cassava Leaf Disease Classification

 
 

Figure 2. Customized Swin Transformer Framework. 
 
The aggregation adopts a hierarchical structure with 
feature fusion across scales for comprehensive 

symptom representation. Expansion and projection 
operations are implemented through multi-scale 
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transforms around depth-wise operations, and skip 
connections are retained to support optimisation 
stability in deep networks in equation 8. A compact 
formulation is: 
  
ℱ𝑠(𝐙) =

Conv1×1
(𝑠,2)

(GELU(Conv1×1
(𝑠,1)

(DWConv3×3
(𝑑𝑠)(𝐙))))  

(8) 
with dilation rates 𝑑1 = 1, 𝑑2 = 2, 𝑑3 = 3 for 
multi-scale processing. 
 
Where in equation 8 Φ(.) denotes feature 
transformation denotes aggregation back to the 
original dimensionality. The block output is formed 
with layer normalisation and a residual path This 
design enables the simultaneous modeling of global 
dependencies via 
a shifted-window MHA and multi-scale symptom 
patterns via the 
 
aggregation pathway, thereby supporting multi-class 
discrimination under 

visually similar disease conditions, as depicted in 
Equation 9. 
9. 
 
Experimental Setup: 
 Dataset Details 
This study utilizes a publicly accessible Kaggle dataset 
of agricultural images, professionally annotated for 
multi-class classification. The set of images is divided 
into five groups, which are Cassava Bacterial Blight, 
Cassava Brown Streak Disease ,Cassava Green Mottle, 
Cassava Mosaic Disease, and Healthy. The sample 
images of each class are shown in Figure 3. The 
proportion of the images represented in each class, 
described in Table 2, simulates a real-world setup, 
which also shows class imbalance. This diversity and 
scale support the robust training and validation of DL 
models for the differential diagnosis of cassava 
diseases from visually similar conditions. 
 
 
 
 

 

 
Figure 3. Five diagnostic categories: Bacterial Blight Small, Brown Streak Small, Green Mottle Small, Mosaic 

Small, and Healthy small cassava leaf Images. 
 
  

Bacterial Blight Small

Brown Streak Small

Green Mottle Small

Healthy Small

Mosaic Small
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Table 2. Composition of the cassava leaf disease image dataset. 
Characteristic Specification 
Total 31179 Samples 
Bacterial Bligh Small 7322 Samples 
Brown Streak Small 6695 Samples 
Green Mottle Small 7018 Samples 
Healthy small 6330 Samples 
Mosaic Small 3814 Samples 
Train (81%) (25441) 
Test (19%) (5738) 
Picture Dimension 224 x 224 x 3 
Total 31179 Samples 

 Experimental Setup 
Training configuration for the Swin Transformer 
framework employed Adam optimizer with a starting 
learning rate of 10^-3^, a weight decay parameter of 
0.04, and a scheduled decay factor of 0.85 applied at 
20-epoch intervals. The cross-entropy loss function 
was selected to manage inter-class imbalance. A batch 
size of 16 and a final-layer dropout of 0.3 were 
implemented to reduce overfitting risk. All 
experiments were coded in Python with TensorFlow 
and executed on hardware featuring an Intel Core i9-
12^th^ Gen CPU, 64 GB of RAM, and a NVIDIA 
GeForce RTX 4070 Ti GPU. 
 
 Evaluation Protocol 
A hold-out validation protocol allocated 20% of the 
total data as a fixed test set. Model efficacy was 
quantified using conventional diagnostic metrics: 
Accuracy, Precision, Sensitivity, the F1-score, and the 
area under the receiver operating characteristic (AUC-
ROC) and precision-recall curves (AUC-PR). These 
metrics are defined by conventional formulations, 
equations 10-13. Since there was paramount interest 
in the detection of the cassava disease cases, there was 
significant focus on maximizing the Sensitivity or 
Recall values. The standard error of Sensitivity was 
also determined, hence allowing the calculation of the 
95% Confidence Interval using the z-test of 1.96. 
 
$Acc = \frac{TP + TN}{Total} \times 100$ (10) 
$Sen = \frac{TP}{TP + FN} \times 100$ (11) 
$Pre = \frac{TP}{TP + FP} \times 100$ (12) 
$F - score = 2 \times \frac{Pre + Sen}{Pre + Sen}$ (13) 

 
Results and Discussion 
This section presents an analysis of the experimental 
outcomes and compares the efficiency of the proposed 
Swin Transformer framework. Results will be 
compared to the advanced CNN, Vision Transformer, 
and hybrid CNN/Vision Transformer-based networks 
on the Kaggle dataset. Table 3 and Figures 4-5 
illustrate the main assessment metrics, which involve 
Accuracy, Precision, Sensitivity, F1_Score, and AUC. 
Multi-class classification is carried out on the five 
classifications: CBB, CBSD, CGM, CMD, and 
Healthy. The proposed framework produces the 
maximum accuracy of 96.80%, outperforming the 
CNN accuracy (95.45%) and the baseline Swin 
Transformer model (96.10%). The ROC-AUC and 
PR-AUC scores are 0.990 for ranking the classes 
accurately. The confusion matrix in Figure 4 
demonstrates that the error differences are mostly 
around CMD and CBB, stating that the visual 
similarity between the two classes is the major point 
of confusion here. Analysis on a per-class basis reveals 
that 96.80% of cases are properly classified overall, 
implying a misclassification error of 3.2%. The 
computational efficiency can be further noted based 
on comparisons regarding training complexity. The 
results revealed that the framework has lower training 
complexity compared to the employed CNN, ViT, 
and hybrid models, as presented in Table 3. The 
proposed approach has faster convergence compared 
to other alternatives, while hybrid models of CNN 
and ViT present an oscillatory nature during the 
optimization process.
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Table 1. Model performance metrics for the proposed implementation configuration. 
Model Acc % Sen Pre  F1 score  
Efficient_Net_B0. 94.21 0.938 0.942 0.940 
MobileNetV2. 94.85 0.9455 0.948 0.947 
ResNet_50. 95.12 0.948 0.951 0.950 
DenseNet_121 95.45  0.951  0.954  0.953 
Vision_Transformer 94.78  0.943  0.947  0.945 
Swin_Transformer_Baseline 96.10  0.957  0.960  0.959 
Hybrid_CNN_ViT 96.15  0.958  0.961  0.960 
Proposed_Swin_Framework  96.80  0.964  0.968  0.966 

 
Table 2. Performance comparison with prior research 
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Models Accuracy Sensitivity F1 Score 
Existing_CNN’s 
MobileNetV2 [21] 96.30  0.960  0.960  
Custom CNN [37] 93.00  0.930  0.930  
VGG-16 [38]  90.50  0.905  0.905  
DenseNet-121 [39] 94.20 0.942  0.942  
InceptionResNetV2 [23] 87.00 0.870  0.870  
VGG-19 [41] 80.27  0.803  0.803  
EfficientNet-B4 [25]  95.10 0.951  0.951  
Existing_ViT’s 
Vision Transformer [31] 94.50  0.945  0.945  
Hybrid_Techniques 
Hybrid CNN-ViT [40] 95.80  0.958  0.958  
 ResNet-50 + Transformer [42] 95.60  -0.956  -0.956  
Swin Transformer [32]  96.10  0.961  0.959  
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Figure 5. Performance improvements of the proposed Swin Transformer framework compared to established 
CNN and ViT. 

 
Conclusion 
This work introduced a Swin Transformer framework 
designed to address key challenges in cassava disease 
image classification. The framework is designed with 
adaptations of a customized Swin Transformer 
framework regarding data dimension, embeddings, 
and a target-oriented result task applied for cassava 
image interpretation. It integrates adaptive patch and 
positional embeddings along with a multi-head 
attention method, enabling global dependency 
modeling with a newly developed multi-scale feature 
aggregation. The proposed model applies a 
hierarchical transformer-based architecture, dividing 
images into adaptive non-overlapping spatial patches. 
A sliding window-based self-attention method sustains 
interwindow connectivity while maintaining 
computational efficiency, thus reducing the strict 
locality requirement of traditional Vision 
Transformers. The multi-scale aggregation applies 
hierarchical feature fusion aiming to boost the 
identification of symptoms at different scales and 
guarantee comprehensive disease representation. The 
proposed architecture of the Swin Transformer 

framework helpfully sustains a balanced integration of 
global contextual cues relatedness with multi-scale 
symptom patterns, which significantly suppresses 
intra-class heterogeneities of cassava diseases while 
improving inter-class discrimination boundaries 
against similar leaf conditions. Performance 
evaluation using a public Kaggle challenge indicates 
the effectiveness of the developed framework, offering 
the Swin Transformer framework a high classification 
accuracy of 96.80% with a high F1 score of 96.40%. 
The framework performs significantly better than 
conventional CNN models as well as baseline Swin 
Transformer models. Future studies will aim towards 
the customization of such architectures to agricultural 
imaging areas involving challenging environments of 
field conditions, high heterogeneity of disease 
manifestations, and limited availability of labeled 
training paradigms. 
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healthy research environment and necessary 
computational resources. 
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