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Abstract
Cassava leaf diseases present significant agricultural challenges due to

visual similarity between pathological conditions and variability in field
conditions, complicating timely intervention. The accuracy of disease
identification in early stages has been critical in preventing crop losses;
however, due to symptom overlap and environmental variations, manual
monitoring has become increasingly difficult. In this paper, a deep learning
approach for cassava disease diagnosis named "Modified Swin
Transformer Framework" has been proposed, attempting to enhance
classification capability by employing a transformer-based vision approach.
In the proposed method, the hierarchical structure of Swin Transformer
has been customized based on input dimensionality, adaptive patch
embedding, and output targeting for cassava disease classification. In this
approach, the input image has been split into adaptive non-overlapping
patches and processed using shifted windows and attention within these
patches. This process has helped the method link all windows efficiently by
avoiding locality issues of non-overlapping regions in attention, while being
computationally efficient. The framework has further developed based on
Swin Transformer architecture and has included adaptive patch and
position embeddings to take advantage of the transformer's global-linking
capability by employing multi-head attention in these embeddings.
Furthermore, the framework has developed and incorporated multi-scale
feature aggregation into this method, which utilizes hierarchical feature
fusion with these inclusive designs to address multi-scale symptom
representation during processing. The inclusion of multi-scale aggregation
has therefore facilitated this method to link global patterns as well as local
patterns; hence, its integrity has helped improve disease classification
capability by minimizing intra-class variability of cassava diseases and
increasing inter-class differences among Cassava Bacterial Blight, Cassava
Brown Streak Disease, Cassava Green Mottle, Cassava Mosaic Disease,

and healthy leaves. In testing the proposed framework, an accuracy of
96.80% and an Fl-score of 96.40% have been achieved on the Kaggle
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public dataset, which has outperformed standard CNN models and

baseline Swin Transformer; the framework has thus proved its effectiveness

as a computerassisted tool for cassava disease observation and

classification.

INTRODUCTION

Cassava (Manihot esculenta), of the Euphorbiaceae
family, has a strong agricultural significance as a staple
food crop in tropical and subtropical regions; thus,
cassava has shown potential for addressing food
security challenges in developing economies. Since it
was first cultivated in South America, cassava has
existed in agricultural systems worldwide since the
16th century, with significant adoption in Africa and
Asia[l], [2]. Even though cassava is drought-resistant
compared to other staple crops[3], a significant threat
from foliar diseases has been shown globally[4], [5].
The mode of disease spread is through vectors,
including whiteflies and aphids, or environmental
transmission via contaminated tools. Stunted growth,
yield reduction, and economic losses often follow in
the wake of infection, but the characteristic symptoms
on leaves including mosaic patterns, chlorosis, and
necrotic lesions remain the feature of choice and focus
of imaging assessment [6], [7], [8].

There are challenges in automatically diagnosing
cassava diseases from field images. For one, high-
dimensional representations of images, in addition to
the limited amount of labeled training examples from
certain disease categories, might worsen the
vulnerability to overfitting and the curse of
dimensionality [9]. Transfer learning is often utilized
to overcome these challenges in limited training
examples [4], [10]. Furthermore, differences in
symptom appearance, location, and contrast, as well
as similarities between different diseases, make it
difficult to distinguish correctly. Traditional
convolutional neural networks might not work
properly in capturing longrange dependencies in
spatial features and tend to focus primarily on local
patterns .

However, these disadvantages recommend the
development of a Swin Transformer model developed
for accurate cassava disease detection. The model is
based on a hierarchical transformer model in which
the image is divided into adaptive nonoverlapping
patches with a shifted window self-attention

operation. Such a network would allow information
to interact across windows with reduced
computational cost and would not suffer from the
locality constraint created due to the nonoverlapping
window constraint introduced in traditional attention
windows.[5], [11] The future scope will be to leverage
this model to better detect cassavarelated leaf
diseases. With this background, the major
contributions of this work are:

The proposed Swin Transformer framework is
customized and adapted to the input data
dimensionality, embedding structure, and outcome of
interest targeted in cassava image analysis. The
proposed framework consists of adaptive patch
embedding, multi-head attention mechanisms to
capture global dependencies, and uses multi-scale
feature aggregation.

The multi-scale aggregation uses hierarchical feature
fusion to efficiently encode disease characteristics
through locally correlated features and capture
symptoms at different scale.[6], [12]

The demonstration that the Swin Transformer
framework facilitates joint learning of long-range and
local patterns. This dual mechanism reduces intra-
class variability in cassava disease presentations and
enhances discrimination from visually similar
diseases, including bacterial blight, viral mosaic, and
nutritional deficiencies.[2], [13]

Empirical validation showing that multi-scale
aggregation enhances feature representation while the
shifted-window multi-head self-attention effectively
captures global context, collectively contributing to
superior diagnostic performance compared to
benchmark models.

The proposed Swin Transformer framework
demonstrates superior performance, achieving the
highest classification accuracy on the Kaggle
benchmark when compared to state-of-the-art CNN
and Vision Transformer models.[10], [14]

The manuscript is structured as follows: Section 2
provides a view of related works. Section 3 introduces
the new cassava diagnostic system. Section 4 mentions
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the datasets, data pre-processing methods, and
evaluation criteria. Section 5 displays the results of
experiments.[15], [16] At last, Section 6 closes this
paper with proposals for further research.

Literature Review

Deep learning (DL) was found to have efficacy in
agricultural imaging and has been employed in diverse
crop management settings, including rice diseases,
wheat rust, tomato blight, and apple scab, as
established in previous research works[17], [18]. The
rising importance of cassava as a food security crop, as
well as limitations in expert availability in some
regions, has thus driven the need for a decision
support system in agricultural imaging[19].

The early works on cassava disease classification were
dominantly conducted using convolutional neural
network (CNNs) architectures, as represented in
Table 1. MobileNetV2 and VGG derivatives were
considered for cassava image classification. AlexNet
and VGG16/VGG19 were considered on digital leaf
images[20]. Custom-built pipelines using DenseNet-
201 were also documented, including an evaluation
using DenseNet-201, which reported results.
Lightweight networks with an attention mechanism
and deeper residual learning architectures were also
considered, including attention MobileNetV2, M-
ResNet50, and DarkNet53 on cassava publicly
available datasets[18].

Vision Transformers (ViTs) recently emerged as a
solution to address the drawbacks of strictly local

CNN-based feature learning in images. On the cassava
image datasets, the application of the ViT concept as
well as the hybrid CNN-ViT models has led to
competitive results, with the contribution of the ViT
on cassava datasets and other public datasets, as
discussed in referencec[12], [18]. Additionally, models
incorporating a CNN feature extractor and the
transformer aggregator, as in the case of the Bagging-
Ensemble of the DenseNet201-ViT, have been
discussed in reference.

Nevertheless, some of the ongoing challenges to
cassava disease image classification, even in the face of
reported advancements, have been mentioned in the
literature as: the potential underestimation of inter-
pixel dependencies by CNN-based architectures, the
ViT model's potential susceptibility to a patch
arrangement, or the lack of preservation of local
details[17]. The computational expense,
interpretability, as well as the ability to generalize well
across datasets have been mentioned as ongoing issues
in the literature, as well[3]. All these issues have been
addressed by the devised hierarchical transformer
framework.

Table 1. Previous research on cassava disease detection utilizing CNNs, ViTs, and hybrid techniques.

Author (Year) Dataset Detail Model Acc

Ramcharan et al. (2017) [6] ﬁ:;:? Leaf Dataset (2,756 | o ONN 93.00
Amara et al. (2017) [7] Self-collected cassava images MobileNetV2 96.30
Too et al. (2019) [8] Cassava disease dataset VGG-16 90.50
Chen et al. (2020) [9] Cassava leaf images DenseNet-121 94.20
Singh et al. (2021) [10] Cassava disease dataset Inception-ResNetV2 87.00
Aboelenin et al. (2022) [11] Cassava leaf images Hybrid CNN-ViT 95.80
Alford & Tuba (2023) [12] Cassava disease dataset VGG-19 80.27
Lietal. (2023) [13] Cassava leaf images EfficientNet-B4 95.10
Jiang et al. (2023) [14] Cassava disease dataset Vision Transformer 94.50
Wang et al. (2024) [15] Cassava leaf dataset Swin Transformer 96.10
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Abbas et al. (2024) [16] Cassava disease images ResNet-50 + Transformer 95.60
Proposed Work Kaggle ) Cassava  Dataset Modified Swin Transformer | 96.80

(31,179 images)
Methodology of the diseases while introducing variability into the

The proposed Swin Transformer framework aims to
improve its feature representation abilities for
automatic cassava disease diagnosis. An overview of
the pipeline is presented in Figure 1, which includes
image preprocessing and data augmentation, followed
by disease classification using a customized Swin
Transformer backbone. Performance comparison is
performed against established CNN and transformer
baselines.

3.1. Data Preprocessing and Augmentation

All images are rescaled to a fixed resolution and are
standardized through intensity normalization to
cancel out variability introduced by the image
acquisition process. Data augmentation is also
implemented during the training phase to generalize
well in scenarios where the amount of data is very
scarce, as is the case for many datasets involving
agricultural images.[21], [22], (23], [24] Data
augmentation is implemented through
transformations that are spatial and photometric and
are aimed at enhancing the semantic understanding

inputs to cancel out the overfitting problem.[25], [26],
(27], 128], [29], [30], [31], [32], [33], [34], [35]

3.2. Proposed Swin Transformer Architecture

The framework is a customized hierarchical Swin
Transformer framework for cassava image analysis,
designed to jointly capture global
relationships and fine-grained local disease patterns.
Input images are standardized to a fixed tensor size

contextual

and converted into a sequence of adaptive non-
overlapping patch tokens, where a linear projection
maps patch vectors into a learnable embedding space
and the classification head maps the final
representation to five outcome classes. Shifted-
window  selfattention  enables  crosswindow
information exchange with computational efficiency,
consequently mitigating locality constraints associated
withnon-overlapping attention windows.[36], [37],

(38, [39], [40], [41]
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Figure 1: An overview of the proposed pipeline.

Each transformer block comprises (i) adaptive patch
and positional embedding, (ii) multi-head self-
attention (MHA) for global dependency modelling,
and (iii) multi-scale feature aggregation that replaces
the standard feed-forward network, as illustrated in
Figure 2. The aggregation integrates hierarchical
feature fusion within a multi-scale design, hence
strengthening feature extraction at different scales and
supporting comprehensive symptom representation

within the transformer stack.[42], [43], [44], [45], [46]

3.2.1. Adaptive Patch and Positional Embedding
Let an RGB input image be:

| = RHXWX3

The adaptive patch partitioning mechanism
determines patch size based on image texture
complexity:

2 T >,
P=44 if1,<T(DH<1y

8 otherwise

1 NP ow .
where T'(I) = Wziﬂ Zj=1 | VI(i,j) | computes

the average gradient magnitude as texture
complexity, and T; = 0.3, T, = 0.1 are empirically
determined thresholds.

In the experimental configuration, images are resized
to 224 x 224 x 3 and adaptively partitioned into
patches based on texture complexity. Patch vectors
are linearly projected into a d-dimensional
embedding space represented in equation The
image is partitioned into N non-overlapping patches

of size P X P:

N_H w
pTPp

Each patch is flattened and linearly projected to
embedding dimension C:

X patches € RN*3P? — Flatten(Partition(I, P))
ZO = [Xclass; XpatcheswE] + Epos € ]R(N+1)XC

where:
e W;€eR3 *XC - Jearnable patch embedding
matrix
e E € RVFDXC = Jearnable positional
embeddings

* X, € R = learnable classification token
e [+;+] denotes concatenation along the
sequence dimension.

3.2.2. Window-based Multi-head Self-attention with
Shifted Windows

Within each block, MHA computes attention across
multiple subspaces, consequently improving
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representational capacity relative to single-head
attention. For an input token matrix (Z), query, key,
and value projections are defined in equation For
input features Z € R¥X¢| the enhanced window-
based attention mechanism is defined as:

Query, Key, Value Projections:
Q = ZW,, K = ZWy,V = ZW,

where WQ,WK, Wy, € RE*dk are projection
. c . .
matrices, and dj, = - with h attention heads scaled

dot-product self-attention is processed in equation 5
as

N 2
Z,indowed = WindowPartition(Z, M) € RuzM*¢

(5)

Window-based attention is applied within local
windows, and shifted windows are alternated across

successive blocks, which enables cross-window
interactions without full global quadratic cost, as
described in the Swin formulation in equation 6.
Residual learning is retained through the attention
sub-layer:

Zifeq = Roll(Z, I%J , I%J)
(6)

3.2.3. Multi-Scale Feature Aggregation

The standard transformer feedforward network is
enhanced by multi-scale feature aggregation to
strengthen pattern extraction at different symptom
scales. The conventional FFN in transformer models
is commonly expressed using two linear layers through
GELU activation functions:

3
MSA(Z) = LayerNorm | Z + Z as - F(Z)
s=1

()

Modified Swin Transformer (SwinV2) for Cassava Leaf Disease Classification
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Figure 2. Customized Swin Transformer Framework.

The aggregation adopts a hierarchical structure with
feature fusion across scales for comprehensive

symptom representation. Expansion and projection
operations are implemented through multi-scale
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transforms around depth-wise operations, and skip
connections are retained to support optimisation
stability in deep networks in equation 8. A compact
formulation is:

Fs(Z) =
Conv>2) (GELU (convgi'll) (DWConv§) (Z))))

®)
with dilation rates d; = 1,d, = 2, d3 = 3 for
multi-scale processing.

Where in equation 8 @() denotes feature
transformation denotes aggregation back to the
original dimensionality. The block output is formed
with layer normalisation and a residual path This
design enables the simultaneous modeling of global
dependencies via
a shiftedwindow MHA and multi-scale symptom
patterns via the

aggregation pathway, thereby supporting multi-class
discrimination under

Bacterial Blight Small
Brown Streak Small
Green Mottle Small

Healthy Small

Mosaic Small

Volume 4, Issue 2, 2026
visually similar disease conditions, as depicted in
Equation 9.

9.

Experimental Setup:

Dataset Details

This study utilizes a publicly accessible Kaggle dataset
of agricultural images, professionally annotated for
multi-class classification. The set of images is divided
into five groups, which are Cassava Bacterial Blight,
Cassava Brown Streak Disease ,Cassava Green Mottle,
Cassava Mosaic Disease, and Healthy. The sample
images of each class are shown in Figure 3. The
proportion of the images represented in each class,
described in Table 2, simulates a real-world setup,
which also shows class imbalance. This diversity and
scale support the robust training and validation of DL
models for the differential diagnosis of cassava
diseases from visually similar conditions.

A

Figure 3. Five diagnostic categories: Bacterial Bligh Small, Brown Streak Small, Green Mottle Small, Mosaic
Small, and Healthy small cassava leaf Images.
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Table 2. Composition of the cassava leaf disease image dataset.

Characteristic Specification
Total 31179 Samples
Bacterial Bligh Small 7322 Samples
Brown Streak Small 6695 Samples
Green Mottle Small 7018 Samples
Healthy small 6330 Samples
Mosaic Small 3814 Samples
Train (81%) (25441)

Test (19%) (5738)

Picture Dimension 224 x224x 3
Total 31179 Samples

Experimental Setup

Training configuration for the Swin Transformer
framework employed Adam optimizer with a starting
learning rate of 103/, a weight decay parameter of
0.04, and a scheduled decay factor of 0.85 applied at
20-epoch intervals. The cross-entropy loss function
was selected to manage inter-class imbalance. A batch
size of 16 and a finallayer dropout of 0.3 were
implemented to reduce overfitting risk. All
experiments were coded in Python with TensorFlow
and executed on hardware featuring an Intel Core i9-

122h” Gen CPU, 64 GB of RAM, and a NVIDIA
GeForce RTX 4070 Ti GPU.

Evaluation Protocol

A hold-out validation protocol allocated 20% of the
total data as a fixed test set. Model efficacy was
quantified using conventional diagnostic metrics:
Accuracy, Precision, Sensitivity, the Fl-score, and the
area under the receiver operating characteristic (AUC-
ROC) and precision-recall curves (AUC-PR). These
metrics are defined by conventional formulations,
equations 10-13. Since there was paramount interest
in the detection of the cassava disease cases, there was
significant focus on maximizing the Sensitivity or
Recall values. The standard error of Sensitivity was
also determined, hence allowing the calculation of the
95% Confidence Interval using the ztest of 1.96.

$Acc = \frac{TP + TN}{Total} \times 100$ (10)
$Sen = \frac{TPYTP + FN} \times 100$ (11)

$Pre = \frac{TPXTP + FP} \times 100$ (12)

$F - score = 2 \times \frac{Pre + Sen}{Pre + Sen}$ (13)

Results and Discussion

This section presents an analysis of the experimental
outcomes and compares the efficiency of the proposed
Swin Transformer framework. Results will be
compared to the advanced CNN, Vision Transformer,
and hybrid CNN/Vision Transformer-based networks
on the Kaggle dataset. Table 3 and Figures 4-5
illustrate the main assessment metrics, which involve
Accuracy, Precision, Sensitivity, F1_Score, and AUC.
Multi-class classification is carried out on the five
classifications: CBB, CBSD, CGM, CMD, and
Healthy. The proposed framework produces the
maximum accuracy of 96.80%, outperforming the
CNN accuracy (95.45%) and the baseline Swin
Transformer model (96.10%). The ROC-AUC and
PR-AUC scores are 0.990 for ranking the classes
accurately. The confusion matrix in Figure 4
demonstrates that the error differences are mostly
around CMD and CBB, stating that the visual
similarity between the two classes is the major point
of confusion here. Analysis on a per-class basis reveals
that 96.80% of cases are properly classified overall,
implying a misclassification error of 3.2%. The
computational efficiency can be further noted based
on comparisons regarding training complexity. The
results revealed that the framework has lower training
complexity compared to the employed CNN, ViT,
and hybrid models, as presented in Table 3. The
proposed approach has faster convergence compared
to other alternatives, while hybrid models of CNN
and ViT present an oscillatory nature during the
optimization process.
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Table 1. Model performance metrics for the proposed implementation configuration.
Model Acc % Sen Pre F1 score
Efficient_Net_BO. 94.21 0.938 0.942 0.940
MobileNetV2. 94.85 0.9455 0.948 0.947
ResNet_50. 95.12 0.948 0.951 0.950
DenseNet_121 95.45 0.951 0.954 0.953
Vision_Transformer 94.78 0.943 0.947 0.945
Swin_Transformer_Baseline 96.10 0.957 0.960 0.959
Hybrid_ CNN_ViT 96.15 0.958 0.961 0.960
Proposed_Swin_Framework 96.80 0.964 0.968 0.966

Table 2. Performance comparison with prior research

Models | Accuracy | Sensitivity | F1 Score
Existing CNN’s

MobileNetV?2 [21] 96.30 0.960 0.960
Custom CNN [37] 93.00 0.930 0.930
VGG-16 [38] 90.50 0.905 0.905
DenseNet-121 [39] 94.20 0.942 0.942
InceptionResNetV2 [23] 87.00 0.870 0.870
VGG-19 [41] 80.27 0.803 0.803
EfficientNet-B4 [25] 95.10 0.951 0.951
Existing ViT’s

Vision Transformer [31] [ 94.50 [ 0.945 [ 0.945
Hybrid_Techniques

Hybrid CNN-ViT [40] 95.80 0.958 0.958
ResNet-50 + Transformer [42] 95.60 0.956 0.956
Swin Transformer [32] 96.10 0.961 0.959

PERFORMANCE GAIN (%) OVER THE
EXISTING CNNS
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Figure 5. Performance improvements of the proposed Swin Transformer framework compared to established

CNN and ViT.

Conclusion

This work introduced a Swin Transformer framework
designed to address key challenges in cassava disease
image classification. The framework is designed with
adaptations of a customized Swin Transformer
framework regarding data dimension, embeddings,
and a target-oriented result task applied for cassava
image interpretation. It integrates adaptive patch and
positional embeddings along with a multi-head
attention method, enabling global dependency
modeling with a newly developed multi-scale feature
aggregation. The proposed model applies a
hierarchical transformer-based architecture, dividing
images into adaptive non-overlapping spatial patches.
A sliding window-based self-attention method sustains
interwindow  connectivity ~ while  maintaining
computational efficiency, thus reducing the strict
locality  requirement of traditional Vision
Transformers. The multi-scale aggregation applies
hierarchical feature fusion aiming to boost the
identification of symptoms at different scales and
guarantee comprehensive disease representation. The
proposed architecture of the Swin Transformer

framework helpfully sustains a balanced integration of
global contextual cues relatedness with multi-scale
symptom patterns, which significantly suppresses
intra-class heterogeneities of cassava diseases while
improving inter-class discrimination boundaries
against similar leaf conditions. Performance
evaluation using a public Kaggle challenge indicates
the effectiveness of the developed framework, offering
the Swin Transformer framework a high classification
accuracy of 96.80% with a high F1 score of 96.40%.
The framework performs significantly better than
conventional CNN models as well as baseline Swin
Transformer models. Future studies will aim towards
the customization of such architectures to agricultural
imaging areas involving challenging environments of
field conditions, high heterogeneity of disease
manifestations, and limited availability of labeled
training paradigms.
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